RESUMO
Nanotechnology has various applications in all branches of science, including engineering, medicine, pharmacy, and other related fields. Conventional techniques, such as the chemical reduction approach, which produces nanoparticles (NPs) using various hazardous chemicals, offer several health risks due to their toxicity and raise serious environmental concerns. In contrast, other techniques are expensive and need a lot of energy. More than 70 % of pathogenic bacterial strains have developed resistance to at least one class of antibiotics, leading to an increase in life-threatening bacterial infections that pose a significant health risk. However, the creation of NPs by biogenic synthesis is risk-free for the environment and clean enough for biological use. This study was aimed at synthesis of novel Moringa oleifera mediated starch capped silver-zinc NPs and green synthesis of ZnO nanoparticles from Aloe vera, papaya, and Lactobacillus plantarum. Antimicrobial activity of both NPs was tested against Gram-negative antibiotic-resistant bacteria Pseudomonas aeruginosa, Gram-positive bacteria Staphylococcus aureus (ATCC 6538), and two foodborne pathogens Listeria monocytogenes and Campylobacter jejuni. Ultraviolet-visible spectroscopy, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy were used for characterization. Majority of the research studies stress the flexibility, repeatability, and desirable features of the metals, polymers, and plant components employed in the production of biomedical nanoparticles. Such an intuitive approach provides several advantages, particularly a reasonable total expense, compliance with healthcare and pharmaceutical implementations, and the ability to produce massive volumes for industrial use. The novelty of the presented work lies in the unusual combination of silver, starch, and zinc oxide nanoparticles using Moringa oleifera, which is an eco-friendly alternative to chemical-based methods. This research exhibits the formation of well-defined nanoparticles with strong antibacterial activity against a wide range of pathogens, giving us insights into their potential applications in various biomedical fields.
Assuntos
Antibacterianos , Química Verde , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Probióticos , Prata , Amido , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Prata/farmacologia , Prata/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Amido/química , Amido/farmacologia , Nanopartículas Metálicas/química , Probióticos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias/efeitos dos fármacos , Moringa oleifera/química , Carica/química , Nanopartículas/química , Aloe/químicaRESUMO
Food borne pathogens are one of the most common yet concerning cause of illnesses around the globe. These microbes invade the body via food items, through numerous mediums of contamination and it is impossible to completely eradicate these organisms from food. Extensive research has been made regarding their treatment. Unfortunately, the only available treatment currently is by antibiotics. Recent exponential increase in antibiotic resistance and the side effect of synthetic compounds have established a need for alternate therapies that could be utilized either on their own or along with antibiotics to provide protection against food-borne diseases. The aim of this review is to provide information regarding some common food borne diseases, their current and possible natural treatment. It will include details regarding some common foodborne pathogens, the disease they cause, prevalence, manifestations and treatment of the respective disease. Some natural modes of potential treatment will be summarized, which including phytochemicals, derived from plants either as crude extracts or as purified form and Bacteriocins as microbial based treatment, obtained from various types of bacteria. The paper will describe their mechanism of action, classification, susceptible organisms, some antimicrobial compounds and producing organisms, application in food systems and as potential treatment. Along with that, synthetic treatment i.e., antibiotics will be discussed including the first-line treatment of some common food borne infections, prevalence and mechanism of resistance against antibiotics in the pathogens.
RESUMO
Amphotericin B (AMPH) is an anti-fungal drug and this study, for the first time as best of our knowledge, reports the repurposing of the Amphotericin B. The drug was found to show significant antibacterial potential revealed by antimicrobial screening, molecular docking, and mode of action analysis targeting Penicillin Binding Protein 2a (PBP 2a protein) which is target of ß-lactam drugs and is involved in cell wall synthesis. Mode of action analysis showed the drug to have hydrophobic and hydrophilic interactions with both C-terminal, trans-peptidase and non-penicillin binding domain of the protein. Additionally, to evaluate the impact of ligand binding on the protein's conformational dynamics, molecular dynamics (MD) simulations were used. Comparative Dynamical flexibility (RMSF) and Dynamics Cross Correlation (DCCM) followed by MD simulations revealed the complex formation significantly effecting structural dynamics of the enzyme significantly in the non-penicillin binding domain (327-668) and slightly in trans peptidase domain. Radius of gyration assessment further showed ligand binding also decreasing over all compactness of protein. Secondary structure analysis indicated the complex formation changing the conformational integrity in non-penicillin binding domain. Hydrogen bond analysis and MMPBSA, free energy of calculations followed by MD simulations, also complemented the antimicrobial and molecular docking revelations suggesting Amphotericin B to have substantial antibacterial potential.
RESUMO
Bacteriocins are gaining immense importance in therapeutics since they show significant antibacterial potential. This study reports the bacteriocin KAE01 from Enterococcus faecium, along with its characterization, molecular modeling, and antibacterial potency, by targeting the matrix protein of Pseudomonas aeruginosa. The bacteriocin was purified by using ammonium sulfate precipitation and fast protein liquid chromatography (FPLC), and its molecular weight was estimated as 55 kDa by means of SDS-PAGE. The bacteriocin was found to show stability in a wide range of pH values (2.0-10.0) and temperatures (100 °C for 1 h and 121 °C for 15 min). Antimicrobial screening of the purified peptide against different strains of P. aeruginosa showed its significant antibacterial potential. Scanning electron microscopy of bacteriocin-induced bacterial cultures revealed significant changes in the cellular morphology of the pathogens. In silico molecular modeling of KAE01, followed by molecular docking of the matrix protein (qSA) of P. aeruginosa and KAE01, supported the antibacterial potency and SEM findings of this study.
Assuntos
Bacteriocinas , Lactobacillales , Pseudomonas aeruginosa , Lactobacillales/metabolismo , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bacteriocinas/farmacologiaRESUMO
Purpose To understand the influence of tomographic corneal characteristics on the epithelium of normal eyes. Methods We scanned a total of 98 eyes of 98 individuals using anterior segment tomography and a spectral-domain optical coherence tomography (OCT) epithelial mapping tool. Only eyes with no previous pathology were included, with a refractive range of +5 diopters (D) to -6 D, intraocular pressure of < 22 mmHg, and no evidence of dry eye (Schirmer's test 2 value > 5 mm). Corneal curvature metrics were statistically correlated with regional epithelial thickness parameters. Results The anterior and posterior corneal surface flat and steep axis, the maximum and minimum curvature, corneal topographic astigmatism, astigmatism polar values, and corneal volume had no statistically significant correlation (p>0.05) with the epithelial thickness. Similarly, anterior corneal surface asphericity had no significant correlation. Posterior surface asphericity had a statistically significant moderate correlation with the epithelium in all areas. Similar results were seen in the multivariate analysis. Conclusions None of the front or back surface parameters had any influence on the corneal epithelium except for the posterior surface asphericity. This statistically significant yet clinically insignificant correlation may be enhanced in diseased populations like keratoconus and could indicate epithelial remodeling with early posterior corneal changes.