Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Cardiol Heart Vasc ; 52: 101399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584674

RESUMO

Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.

2.
Heliyon ; 10(5): e26959, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455550

RESUMO

Background: The discovery of novel cancer therapeutic strategies leads to the development of nanotechnology-based methods for cancer treatment. Silver nanoparticles (Ag-NPs) have garnered considerable interest owing to their size, shape, and capacity to modify chemical, optical, and photonic properties. This study aimed to investigate the impact of Ag-NPs on inducing of apoptosis in MDA-MB 231 cells by examining specific signaling pathways. Materials and methods: The cytotoxicity of Ag-NPs was determined using an MTT assay in MDA-MB 231 cells. The apoptotic effects were assessed using the Annexin-V/PI assay. Real-time PCR and western blotting were conducted to analyze the expression of apoptosis-related genes and proteins, respectively. Levels of ERK1/2 and cyclin D1 were measured using ELISA. Cell cycle assay was determined by flow cytometry. Cell migration was evaluated by scratch assay. Results: The results revealed that Ag-NPs triggered apoptosis and cell cycle arrest in MDA-MB 231 cells. The expression level of Bax (pro-apoptotic gene) was increased, while Bcl-2 (anti-apoptotic gene) expression was decreased. Increased apoptosis was correlated with increased levels of p53 and PTEN. Additionally, notable alterations were observed in protein expression related to the Janus kinase/Signal transducers (JAK/STAT) pathway, including p-AKT. Additionally, reduced expression of h-TERT was observed following exposure to Ag-NPs. ELISA results demonstrated a significant reduction in p-ERK/Total ERK and cyclin D1 levels in Ag-NPs-exposed MDA-MB 231 cells. Western blotting analysis also confirmed the reduction of p-ERK/Total ERK and cyclin D1. Decreased level of cyclin D is associated with suppression of cell cycle progression. The migratory ability of MDA-MB-231 cells was reduced upon treatment with Ag-NPs. Conclusions: Our findings revealed that Ag-NPs influenced the proliferation, apoptosis, cell cycle, and migration in MDA-MB 231 cells, possibly by modulating protein expression of the AKT/ERK/Cyclin D1 axis.

3.
Epilepsy Res ; 196: 107206, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639748

RESUMO

Seizures are a common neurological disorder that affects people of all ages. These sudden, uncontrolled electrical disturbances in the brain can cause a variety of symptoms, including convulsions, loss of consciousness, and abnormal sensations. While seizures have long been recognized as a potential cause of hormonal imbalances, recent research has shed new light on the link between seizures and prolactin. The study involved 30 adult female Wistar rats, which were divided into a control group (treated with normal saline) and four treatment groups: chronic group (treated with 30 mg/kg pentylenetetrazol intraperitoneally three days a week for 10 weeks), chronic + Levetiracetam (50 mg/kg, gavage), chronic + Cabergoline (0.05 mg/kg, gavage), and chronic + Levetiracetam (25 mg/kg) + cabergoline (0.025). The drugs were administered three days a week for 10 weeks. Field action potentials were recorded from the CA1 area of the hippocampus using eLab after anesthetizing the animals with a ketamine-xylazine combination (70 +7 mg/kg). The prolactin levels were measured using the ELISA method after serum preparation. The findings indicate that the use of levetiracetam as an anticonvulsant drug resulted in a significant decrease in the amount of prolactin and spike number of convulsive activities compared to the chronic group. However, the amplitudes of convulsive activities did not show a significant difference between the control and other treatment groups. In conclusion, investigating the possibility of subclinical seizures and utilizing anticonvulsant medications in hyperprolactinemia that is resistant to treatment are crucial in treating infertility.


Assuntos
Hiperprolactinemia , Animais , Feminino , Ratos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Cabergolina , Hiperprolactinemia/induzido quimicamente , Hiperprolactinemia/tratamento farmacológico , Levetiracetam/farmacologia , Prolactina , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
4.
Front Cell Dev Biol ; 11: 1162136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274742

RESUMO

Adult stem cells (ASCs) reside throughout the body and support various tissue. Owing to their self-renewal capacity and differentiation potential, ASCs have the potential to be used in regenerative medicine. Their survival, quiescence, and activation are influenced by specific signals within their microenvironment or niche. In better words, the stem cell function is significantly influenced by various extrinsic signals derived from the niche. The stem cell niche is a complex and dynamic network surrounding stem cells that plays a crucial role in maintaining stemness. Studies on stem cell niche have suggested that aged niche contributes to the decline in stem cell function. Notably, functional loss of stem cells is highly associated with aging and age-related disorders. The stem cell niche is comprised of complex interactions between multiple cell types. Over the years, essential aspects of the stem cell niche have been revealed, including cell-cell contact, extracellular matrix interaction, soluble signaling factors, and biochemical and biophysical signals. Any alteration in the stem cell niche causes cell damage and affects the regenerative properties of the stem cells. A pristine stem cell niche might be essential for the proper functioning of stem cells and the maintenance of tissue homeostasis. In this regard, niche-targeted interventions may alleviate problems associated with aging in stem cell behavior. The purpose of this perspective is to discuss recent findings in the field of stem cell aging, heterogeneity of stem cell niches, and impact of age-related changes on stem cell behavior. We further focused on how the niche affects stem cells in homeostasis, aging, and the progression of malignant diseases. Finally, we detail the therapeutic strategies for tissue repair, with a particular emphasis on aging.

5.
Curr Mol Med ; 23(3): 266-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35040412

RESUMO

BACKGROUND: DNA methylation was considered as prognostic information in some hematological malignancies. Previous studies have reported the in vitro and in vivo biology role of mesenchymal stem cells (MSCs) on leukemic cells. The aim of this study was to investigate the effect of MSCs on the promoter methylation status of hTERT as a catalytic subunit of telomerase enzyme. METHODS: In the experimental study, the Molt-4 leukemic cells were co-cultured with MSCs for 7 days. At the end of the co-culture period, the Molt-4 cells were collected, DNA and protein were extracted. Then methylation specific-PCR and western blotting were done for evaluating the hTERT gene promoter methylation status and cyclin D1 and hTERT protein expression, respectively. In the following, the flow cytometry was done for cell cycle distribution assay. RESULTS: It was found that MSCs resulted in a significant decrease in the cyclin D1 and hTERT protein expression levels. Also, MSCs caused changes in the methylation status of the CpG islands in the hTERT gene promoter region. The following results showed that MSCs caused a significant increase in the number of cells at G0/G1 phase and arrest the G0/G1 phase as well as decrease in the cell proliferation of Molt-4 cells. CONCLUSION: It is concluded that co-culture of MSCs with Molt-4 cells could be involved in changing the methylation status of hTERT gene promoter, cell cycle and hTERT protein expression; it could be potentially beneficial for further investigations regarding the cell transplantation and cell-based therapy.


Assuntos
Leucemia , Células-Tronco Mesenquimais , Humanos , Ilhas de CpG/genética , Ciclina D1/genética , Metilação de DNA , Regiões Promotoras Genéticas , Tecido Adiposo
6.
Regen Ther ; 24: 219-226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37519907

RESUMO

Breast cancer stem cells (BCSCs) are a small subpopulation of breast cancer cells, capable of metastasis, recurrence, and drug resistance in breast cancer patients. Therefore, targeting BCSCs appears to be a promising strategy for the treatment and prevention of breast cancer metastasis. Mounting evidence supports the fact that carnitine, a potent antioxidant, modulates various mechanisms by enhancing cellular respiration, inducing apoptosis, and reducing proliferation and inflammatory responses in tumor cells. The objective of this study was to investigate the impact of L-carnitine (LC) on the rate of proliferation and induction of apoptosis in CD44+ CSCs. To achieve this, the CD44+ cells were enriched using the Magnetic-activated cell sorting (MACS) isolation method, followed by treatment with LC at various concentrations. Flow cytometry analysis was used to determine cell apoptosis and proliferation, and western blotting was performed to detect the expression levels of proteins. Treatment with LC resulted in a significant decrease in the levels of p-JAK2, p-STAT3, Leptin receptor, and components of the leptin pathway. Moreover, CD44+ CSCs-treated cells with LC exhibited a reduction in the proliferation rate, accompanied by an increase in the percentage of apoptotic cells. Hence, it was concluded that LC could potentially influence the proliferation and apoptosis of CD44+ CSC by modulating the expression levels of specific protein.

7.
Regen Ther ; 23: 94-101, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37206538

RESUMO

Mesenchymal stem cells (MSCs) are effective in hematopoietic engraftment and tissue repair in stem cell transplantation. In addition, these cells control the process of hematopoiesis by secreting growth factors and cytokines. The aim of the present study is to investigate the effect of rat bone marrow (BM)-derived MSCs on the granulocyte differentiation of rat BM-resident C-kit+ hematopoietic stem cells (HSCs). The mononuclear cells were collected from rat BM using density gradient centrifugation and MSCs and C-kit+ HSCs were isolated. Then, cells were divided into two groups and differentiated into granulocytes; C-kit+ HSCs alone (control group) and co-cultured C-kit+ HSCs with MSCs (experimental group). Subsequently, the granulocyte-differentiated cells were collected and subjected to real-time PCR and Western blotting for the assessment of their telomere length (TL) and protein expressions, respectively. Afterwards, culture medium was collected to measure cytokine levels. CD34, CD16, CD11b, and CD18 granulocyte markers expression levels were significantly increased in the experimental group compared to the control group. A significant change was also observed in the protein expression of Wnt and ß-catenin. In addition, MSCs caused an increase in the TL of granulocyte-differentiated cells. MSCs could affect the granulocyte differentiation of C-kit+ HSCs via increasing TL and Wnt/ß-catenin protein expression.

8.
Transpl Immunol ; 77: 101797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720394

RESUMO

Natural killer cells (NK cells) can kill cancerous cells without prior sensitization. This feature makes them appealing candidates for cellular therapy. Due to the degradation rate and controlled release of these matrices, hydrogels hold great promise in cell differentiation. The study aims to investigate the effect of encapsulated alginate-gelatin on the differentiation potential of C-kit+ cells toward NK cells which are mediated by cytokines detection. Under both encapsulated and unencapsulated conditions, C-kit+ cells can differentiate into NK cells. In the following, real-time PCR and western blotting were done to investigate the mRNA and protein expression, respectively. Determine cytokine profiles from the collected culture medium conducted a Cytokine antibody array. The differentiated cells were then co-cultured with Molt-4 cells to examine the expression levels of INF-γ, TNF-α, and IL-10 using real-time-PCR. There was a substantial change in protein expression of the Notch pathway. Also, the encapsulation increased the mRNA expression of INF-γ and TNF-α in Molt-4 cells. Based on these findings, the encapsulation effects on the differentiation of C-kit+ cells toward NK cells could be related to the secreted cytokines such as interleukin-10 and INF-γ and the Notch protein expression.


Assuntos
Células-Tronco Hematopoéticas , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Citocinas/metabolismo , Diferenciação Celular , RNA Mensageiro
9.
Curr Stem Cell Res Ther ; 18(2): 231-236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35546751

RESUMO

BACKGROUND: Increased oxygen species levels can induce mitochondrial DNA damage and chromosomal aberrations and cause defective stem cell differentiation, leading finally to senescence of stem cells. In recent years, several studies have reported that antioxidants can improve stem cell survival and subsequently affect the potency and differentiation of these cells. Finding factors, which reduce the senescence tendency of stem cells upon expansion, has great potential for cellular therapy in regenerative medicine. This study aimed to evaluate the effects of L-carnitine (LC) on the aging of C-kit+ hematopoietic progenitor cells (HPCs) via examining the expression of some signaling pathway components. METHODS: For this purpose, bone marrow resident C-kit+ HPCs were enriched by the magnetic-activated cell sorting (MACS) method and were characterized using flow cytometry as well as immunocytochemistry. Cells were treated with LC, and at the end of the treatment period, the cells were subjected to the realtime PCR technique along with a western blotting assay for measurement of the telomere length and assessment of protein expression, respectively. RESULTS: The results showed that 0.2 mM LC caused the elongation of the telomere length and increased the TERT protein expression. In addition, a significant increase was observed in the protein expression of p38, p53, BCL2, and p16 as key components of the telomere-dependent pathway. CONCLUSION: It can be concluded that LC can increase the telomere length as an effective factor in increasing the cell survival and maintenance of the C-kit+ HPCs via these signaling pathway components.


Assuntos
Medula Óssea , Carnitina , Humanos , Carnitina/farmacologia , Carnitina/metabolismo , Senescência Celular/genética , Células-Tronco Hematopoéticas , Telômero/genética , Células da Medula Óssea
10.
Clin Transl Oncol ; 25(8): 2559-2568, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36964888

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, accounting for 20% of cases. Due to the lack of a molecular target, limited options are available for TNBC treatment. Radiation therapy (RT) is a treatment modality for the management of TNBC following surgery; however, it has a detrimental effect on surrounding healthy tissues/cells at a higher rate. METHODS: We examined the effect of RT in combination with chrysin as a possible radiosensitizing agent in an MDA-MB-231 cell line as a model of a TNBC. The growth inhibitory effects of chrysin were examined using an MTT assay. Flow cytometry was performed to evaluate apoptosis and expression of hypoxia-induced factor-1α (HIF-1α). The protein expression of p-STAT3/STAT3 and Cyclin D1 was examined using western blotting. Real-time PCR determined apoptotic-related genes (Bax, BCL2, p53). RESULTS: Treatment of MDA-MB-231 cells with chrysin in combination with RT caused synergistic antitumor effects, with an optimum combination index (CI) of 0.495. Our results indicated that chrysin synergistically potentiated RT-induced apoptosis in MDA-MB-231 compared with monotherapies (chrysin and/or RT alone). Expression of HIF-1α was decreased in the cells exposed to combinational therapy. The apoptotic effect of combinational therapy was correlated with increased Bax (pro-apoptotic gene) and p53 levels along with reduced expression of Bcl-2 (anti-apoptotic gene). Increased apoptosis was associated with reduced expression of Cyclin D1, p-STAT3. CONCLUSION: These findings highlight the potential effect of chrysin as a radiosensitizer, indicating the synergistic anti-cancer effect of chrysin and RT in TNBC. Further investigation is warranted in this regard.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/genética , Ciclina D1/metabolismo , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2/metabolismo , Proliferação de Células , Apoptose
11.
Stem Cell Res Ther ; 14(1): 342, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017510

RESUMO

Epithelial-mesenchymal transition (EMT) is a cell remodeling process in which epithelial cells undergo a reversible phenotype switch via the loss of adhesion capacity and acquisition of mesenchymal characteristics. In other words, EMT activation can increase invasiveness and metastatic properties, and prevent the sensitivity of tumor cells to chemotherapeutics, as mesenchymal cells have a higher resistance to chemotherapy and immunotherapy. EMT is orchestrated by a complex and multifactorial network, often linked to episodic, transient, or partial events. A variety of factors have been implicated in EMT development. Based on this concept, multiple metabolic pathways and master transcription factors, such as Snail, Twist, and ZEB, can drive the EMT. Emerging evidence suggests that oxidative stress plays a significant role in EMT induction. One emerging theory is that reducing mitochondrial-derived reactive oxygen species production may contribute to EMT development. This review describes how metabolic pathways and transcription factors are linked to EMT induction and addresses the involvement of signaling pathways.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Humanos , Feminino , Neoplasias da Mama/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Oxidativo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição da Família Snail/metabolismo
12.
Oxid Med Cell Longev ; 2022: 2713483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401928

RESUMO

There is a hot topic in stem cell research to investigate the process of hematopoietic stem cell (HSC) aging characterized by decreased self-renewal ability, myeloid-biased differentiation, impaired homing, and other abnormalities related to hematopoietic repair function. It is of crucial importance that HSCs preserve self-renewal and differentiation ability to maintain hematopoiesis under homeostatic states over time. Although HSC numbers increase with age in both mice and humans, this cannot compensate for functional defects of aged HSCs. The underlying mechanisms regarding HSC aging have been studied from various perspectives, but the exact molecular events remain unclear. Several cell-intrinsic and cell-extrinsic factors contribute to HSC aging including DNA damage responses, reactive oxygen species (ROS), altered epigenetic profiling, polarity, metabolic alterations, impaired autophagy, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, nuclear factor- (NF-) κB pathway, mTOR pathway, transforming growth factor-beta (TGF-ß) pathway, and wingless-related integration site (Wnt) pathway. To determine how deficient HSCs develop during aging, we provide an overview of different hallmarks, age-related signaling pathways, and epigenetic modifications in young and aged HSCs. Knowing how such changes occur and progress will help researchers to develop medications and promote the quality of life for the elderly and possibly alleviate age-associated hematopoietic disorders. The present review is aimed at discussing the latest advancements of HSC aging and the role of HSC-intrinsic factors and related events of a bone marrow niche during HSC aging.


Assuntos
Senescência Celular , Células-Tronco Hematopoéticas , Envelhecimento/fisiologia , Animais , Diferenciação Celular , Senescência Celular/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , NF-kappa B/metabolismo , Qualidade de Vida
13.
Front Bioeng Biotechnol ; 10: 849768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677295

RESUMO

Autophagy is a fundamental homeostatic process crucial for cellular adaptation in response to metabolic stress. Autophagy exerts its effect through degrading intracellular components and recycling them to produce macromolecular precursors and energy. This physiological process contributes to cellular development, maintenance of cellular/tissue homeostasis, immune system regulation, and human disease. Allogeneic hematopoietic stem cell transplantation (HSCT) is the only preferred therapy for most bone marrow-derived cancers. Unfortunately, HSCT can result in several serious and sometimes untreatable conditions due to graft-versus-host disease (GVHD), graft failure, and infection. These are the major cause of morbidity and mortality in patients receiving the transplant. During the last decade, autophagy has gained a considerable understanding of its role in various diseases and cellular processes. In light of recent research, it has been confirmed that autophagy plays a crucial role in the survival and function of hematopoietic stem cells (HSCs), T-cell differentiation, antigen presentation, and responsiveness to cytokine stimulation. Despite the importance of these events to HSCT, the role of autophagy in HSCT as a whole remains relatively ambiguous. As a result of the growing use of autophagy-modulating agents in the clinic, it is imperative to understand how autophagy functions in allogeneic HSCT. The purpose of this literature review is to elucidate the established and implicated roles of autophagy in HSCT, identifying this pathway as a potential therapeutic target for improving transplant outcomes.

14.
Curr Med Chem ; 29(26): 4529-4546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35135444

RESUMO

Nanotechnology is a pioneer field of study for engineering smart nanosystems in targeted diagnosis and treatment in cancer therapy. Effective treatment for various types of solid tumors should ideally target malignant cells and tissue while having no effect on healthy cells in the body. Nano-sized graphene oxide (GO) and reduced graphene oxide (rGO) have phenomenal chemical versatility, high surface area ratio, and supernatural physical properties. The synergistic effects caused by the well-defined assembly of GO and rGO surface generate not only essential optical, mechanical, but also electronic behaviors. In multimodal cancer therapy, developing innovative multifunctional hybrid nanoparticles with significant potential is extensively considered. GO and rGO are programmable targeted delivery systems infused with photonic energy that may be used in photothermal treatment. Its remarkable properties indicated its applications as a biosensor, bio-imaging for cancer diagnosis. In this current review, we show a remarkable highlight about GO, rGO, and discuss the notable applications for cancer diagnosis and treatment, and provide an overview of possible cellular signaling pathways that are affected by GO, rGO in cancer treatment.


Assuntos
Grafite , Nanopartículas , Neoplasias , Grafite/química , Grafite/uso terapêutico , Humanos , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
15.
Curr Gene Ther ; 22(2): 152-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34011256

RESUMO

BACKGROUND: Bone marrow mononuclear cells (BM-MNCs), as a collection of hematopoietic and mesenchymal stem cells (MSCs), are capable of producing all blood cell lineages. The use of cytokines, growth factors or cells capable of secreting these factors will help in stimulating the proliferation and differentiation of these cells into mature cell lines. On the other hand, MSCs are multipotent stromal cells that can be differentiated into various cell lineages. Moreover, these cells can control the process of hematopoiesis by secreting cytokines and growth factors. The present study aimed to investigate the effect of BM-derived MSCs on the differentiation of MNCs based on the assessment of cell surface markers by flow cytometry analysis. METHODS: For this purpose, the MNCs were purified from rat BM using density gradient centrifugation. Thereafter, they were cultured, expanded, and characterized. Next, BM-derived-MSCs were cocultured with MNCs, and then were either cultured MNCs alone (control group) or co-cultured MNCs with BM-derived-MSCs (experimental group). Finally, they were collected on day 7 and subjected to flow cytometry analysis for granulocyte markers and ERK protein investigation. RESULTS: It was found that the expression levels of CD34, CD16, CD11b, and CD18 granulocyte markers as well as protein expression of ERK have significantly increased in the experimental group compared to the control group. CONCLUSION: Therefore, it can be concluded that MSCs could affect the granulocyte differentiation of MNCs via ERK protein expression, which is a key component of the ERK signaling pathway.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Citocinas/metabolismo , Granulócitos , Células-Tronco Mesenquimais/metabolismo , Ratos
16.
Curr Drug Targets ; 23(1): 60-71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34431459

RESUMO

Tumors are made up of different types of cancer cells that contribute to tumor heterogeneity. Among these cells, cancer stem cells (CSCs) have a significant role in the onset of cancer and development. Like other stem cells, CSCs are characterized by the capacity for differentiation and self-renewal. A specific population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into mesoderm-specific cells. The pro-or anti-tumorigenic potential of MSCs on the proliferation and development of tumor cells has been reported as contradictory results. Also, tumor progression is specified by the corresponding tumor cells like the tumor microenvironment. The tumor microenvironment consists of a network of reciprocal cell types such as endothelial cells, immune cells, MSCs, and fibroblasts as well as growth factors, chemokines, and cytokines. In this review, recent findings related to the tumor microenvironment and associated cell populations, homing of MSCs to tumor sites, and interaction of MSCs with tumor cells will be discussed.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Células Endoteliais/metabolismo , Humanos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
17.
Iran J Basic Med Sci ; 25(10): 1222-1227, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311196

RESUMO

Objectives: Hematopoietic stem cells (HSCs) are the cells that give rise to different types of blood cells during the hematopoiesis process. Mesenchymal stromal cells (MSCs) as key elements in the bone marrow (BM) niche interact with hematopoietic progenitor cells (HPCs) by secreting cytokines, which control HPCs maintenance and fate. Here we report that BM-MSCs are capable of inducing granulocytic differentiation of the C-Kit+ HSCs via activating JAK3/STAT3, ERK, and PI3K signaling pathways. Materials and Methods: For this purpose, BM-MSCs and C-kit+ HSCs were isolated. Next, cells were divided into two groups and differentiated into granulocytes: C-kit+ HSCs alone (control group) and co-cultured C-kit+ HSCs with MSCs (experimental group). Afterward, the gene and protein expression were assessed by real-time PCR and western blotting, respectively. Results: It was found that BM-MSCs resulted in increased JAK3/STAT3, ERK, and PI3K protein expression in granulocyte differentiated C-kit+ HSCs. Conclusion: It should be concluded that MSCs could affect the granulocyte differentiation of C-kit+ HSCs via increasing JAK3/STAT3, ERK, and PI3K signaling pathways.

18.
Curr Stem Cell Res Ther ; 17(5): 407-414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152869

RESUMO

Hematopoietic stem cells (HSCs) have self-renewal as well as pluripotency properties and are responsible for producing all types of blood cells. These cells are generated during embryonic development and transit through various anatomical niches (bone marrow microenvironment). Today, they are easily enriched from some sources, including peripheral blood, bone marrow, and umbilical cord blood (UCB). HSCs have been used for many years to treat a variety of cancers and blood disorders such as various types of leukemia, lymphoma, myelodysplastic, myeloproliferative syndromes, etc. Although almost 50 years have passed since the discovery of stem cells and numerous investigations on cell therapy and regenerative medicine have been made, further studies need to be conducted in this regard. This manuscript review the history, location, evolution, isolation, and therapeutic approaches of HSCs.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Medula Óssea , Feminino , Sangue Fetal , Humanos , Gravidez , Medicina Regenerativa
19.
Curr Med Chem ; 29(10): 1804-1823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34254903

RESUMO

Nanoparticles (NPs), due to their medical applications, are widely used. Accordingly, the use of mesenchymal stem cells is one of the most important alternatives in the tissue engineering field. NPs play effective roles in stem cells proliferation and differentiation. The combination of NPs and tissue regeneration by stem cells has created a new therapeutic approach towards humanity. Of note, the physicochemical properties of NPs determine their biological function. Interestingly, various mechanisms such as modulation of signaling pathways and generation of reactive oxygen species, are involved in NPs-induced cellular proliferation and differentiation. This review summarized the types of nanomaterials effective on stem cell differentiation, the physicochemical features, biomedical application of these materials and the relationship between nanomaterials and environment.


Assuntos
Células-Tronco Mesenquimais , Nanoestruturas , Diferenciação Celular , Humanos , Nanoestruturas/química , Células-Tronco , Engenharia Tecidual
20.
Can Vet J ; 52(4): 389-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21731091

RESUMO

Dysplastic features of erythroid and megakaryocytic lineages were observed in a cat with acute erythroid leukemia. We demonstrated that flow cytometry analysis of the expression of glycophorin A and CD71 by neoplastic cells can be helpful in the diagnosis of this type of feline leukemia.


Assuntos
Doenças do Gato/diagnóstico , Eritrócitos Anormais/patologia , Leucemia Eritroblástica Aguda/veterinária , Animais , Antígenos CD/metabolismo , Biomarcadores Tumorais/análise , Doenças do Gato/metabolismo , Gatos , Evolução Fatal , Feminino , Citometria de Fluxo/veterinária , Glicoforinas/metabolismo , Leucemia Eritroblástica Aguda/diagnóstico , Leucemia Eritroblástica Aguda/metabolismo , Linhagem , Receptores da Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA