RESUMO
Plant diseases caused by Pseudomonas syringae are essentially controlled in the field with the use of copper-based products and antibiotics, raising environmental and safety concerns. Antimicrobial peptides (AMPs) derived from fungi may represent a sustainable alternative to those chemicals. Trichogin GA IV, a non-ribosomal, 11-residue long AMP naturally produced by the fungus Trichoderma longibrachiatum has the ability to insert into phospholipidic membranes and form water-filled pores, thereby perturbing membrane integrity and permeability. In previous studies, peptide analogs modified at the level of specific residues were designed to be water-soluble and active against plant pathogens. Here, we studied the role of glycine-to-lysine substitutions and of the presence of a C-terminal leucine amide on bioactivity against Pseudomonas syringae bacteria. P. syringae diseases affect a wide range of crops worldwide, including tomato and kiwifruit. Our results show that trichogin GA IV analogs containing two or three Gly-to-Lys substitutions are highly effective in vitro against P. syringae pv. tomato (Pst), displaying minimal inhibitory and minimal bactericidal concentrations in the low micromolar range. The same analogs are also able to inhibit in vitro the kiwifruit pathogen P. syringae pv. actinidiae (Psa) biovar 3. When sprayed on tomato plants 24 h before Pst inoculation, only tri-lysine containing analogs were able to significantly reduce bacterial titers and symptom development in infected plants. Our results point to a positive correlation between the number of lysine substitutions and the antibacterial activity. This correlation was supported by microscopy analyses performed with mono-, di- and tri-Lys containing analogs that showed a different degree of interaction with Pst cells and ultrastructural changes that culminated in cell lysis.
Assuntos
Antibacterianos , Lisina , Pseudomonas syringae , Pseudomonas syringae/efeitos dos fármacos , Lisina/química , Lisina/farmacologia , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Peptaibols/farmacologia , Peptaibols/química , Testes de Sensibilidade Microbiana , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Solanum lycopersicum/microbiologiaRESUMO
Plasmopara viticola, the agent of grapevine downy mildew, causes enormous economic damage, and its control is primarily based on the use of synthetic fungicides. The European Union policies promote reducing reliance on synthetic plant protection products. Biocontrol agents such as Trichoderma spp. constitute a resource for the development of biopesticides. Trichoderma spp. produce secondary metabolites such as peptaibols, but the poor water solubility of peptaibols limits their practical use as agrochemicals. To identify new potential bio-inspired molecules effective against P. viticola, various water-soluble peptide analogs of the peptaibol trichogin were synthesized. In grapevine leaf disk assays, the peptides analogs at a concentration of 50 µM completely prevented P. viticola infection after zoosporangia inoculation. Microscopic observations of one of the most effective peptides showed that it causes membrane lysis and cytoplasmic granulation in both zoosporangia and zoospores. Among the effective peptides, 4r was selected for a 2-year field trial experiment. In the vineyard, the peptide administered at 100 µM (equivalent to 129.3 g/ha) significantly reduced the disease incidence and severity on both leaves and bunches, with protection levels similar to those obtained using a cupric fungicide. In the second-year field trial, reduced dosages of the peptide were also tested, and even at the peptide concentration reduced by 50 or 75%, a significant decrease in the disease incidence and severity was obtained at the end of the trial. The peptide did not show any phytotoxic effect. Previously, peptide 4r had been demonstrated to be active against other fungal pathogens, including the grapevine fungus Botrytis cinerea. Thus, this peptide may be a candidate for a broad-spectrum fungicide whose biological properties deserve further investigation.
Assuntos
Oomicetos , Peronospora , Trichoderma , Vitis , Peptaibols/metabolismo , Peptaibols/farmacologia , Fazendas , Vitis/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , ÁguaRESUMO
Xylanase inhibitors (XIs) are plant cell wall proteins largely distributed in monocots that inhibit the hemicellulose degrading activity of microbial xylanases. XIs have been classified into three classes with different structures and inhibition specificities, namely Triticum aestivum xylanase inhibitors (TAXI), xylanase inhibitor proteins (XIP), and thaumatin-like xylanase inhibitors (TLXI). Their involvement in plant defense has been established by several reports. Additionally, these inhibitors have considerable economic relevance because they interfere with the activity of xylanases applied in several agro-industrial processes. Previous reviews highlighted the structural and biochemical properties of XIs and hypothesized their role in plant defense. Here, we aimed to update the information on the genomic organization of XI encoding genes, the inhibition properties of XIs against microbial xylanases, and the structural properties of xylanase-XI interaction. We also deepened the knowledge of XI regulation mechanisms in planta and their involvement in plant defense. Finally, we reported the recently studied strategies to reduce the negative impact of XIs in agro-industrial processes and mentioned their allergenicity potential.
Assuntos
Endo-1,4-beta-Xilanases , Proteínas de Plantas , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Proteínas de Plantas/metabolismo , Triticum/genética , Imunidade Vegetal , Inibidores Enzimáticos/químicaRESUMO
Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.
Assuntos
Arabidopsis/imunologia , Botrytis/patogenicidade , Resistência à Doença/imunologia , Endo-1,4-beta-Xilanases/metabolismo , Fusarium/enzimologia , Nicotiana/imunologia , Imunidade Vegetal , Pseudomonas syringae/patogenicidade , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/metabolismo , Nicotiana/microbiologiaRESUMO
Fungal species belonging to the Trichoderma genus are commonly used as biocontrol agents against several crop pathogens. Among their secondary metabolites, peptaibols are helical, antimicrobial peptides, which are structurally stable even under extreme pH and temperature conditions. The promise of peptaibols as agrochemicals is, however, hampered by poor water solubility, which inhibits efficient delivery for practical use in crop protection. Using a versatile synthetic strategy, based on green chemistry procedures, we produced water-soluble analogs of the short-length peptaibol trichogin. Although natural trichogin was inactive against the tested fungal plant pathogens (Botrytis cinerea, Bipolaris sorokiniana, Fusarium graminearum, and Penicillium expansum), three analogs completely inhibited fungal growth at low micromolar concentrations. The most effective peptides significantly reduced disease symptoms by B. cinerea on common bean and grapevine leaves and ripe grape berries without visible phytotoxic effects. An in-depth conformational analysis featuring a 3D-structure-activity relationship study indicated that the relative spatial position of cationic residues is crucial for increasing peptide fungicidal activity.
Assuntos
Substituição de Aminoácidos/efeitos dos fármacos , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Peptaibols/genética , Peptaibols/farmacologia , Doenças das Plantas/microbiologia , Trichoderma/genética , Antifúngicos/química , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptaibols/química , Conformação Proteica , Proteólise , Análise EspectralRESUMO
Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.
Assuntos
Parede Celular/metabolismo , Enzimas/metabolismo , Fusarium/enzimologia , Fusarium/patogenicidade , Glycine max/microbiologia , Triticum/microbiologia , Biomassa , Celulase/genética , Endo-1,4-beta-Xilanases/genética , Focalização Isoelétrica , Mutação/genética , Doenças das Plantas/microbiologia , Poligalacturonase/genética , Plântula/microbiologia , Transformação Genética , VirulênciaRESUMO
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive fungal diseases of wheat worldwide. The pathogen infects the spike at flowering time and causes severe yield losses, deterioration of grain quality, and accumulation of mycotoxins. The understanding of the precise means of pathogen entry and colonization of floral tissue is crucial to providing effective protection against FHB. Polygalacturonase (PG) inhibiting proteins (PGIPs) are cell-wall proteins that inhibit the activity of PGs, a class of pectin-depolymerizing enzymes secreted by microbial pathogens, including Fusarium spp. The constitutive expression of a bean PGIP (PvPGIP2) limits FHB symptoms and reduces mycotoxin accumulation in wheat grain. To better understand which spike tissues play major roles in limiting F. graminearum infection, we explored the use of PvPGIP2 to defend specific spike tissues. We show here that the simultaneous expression of PvPGIP2 in lemma, palea, rachis, and anthers reduced FHB symptoms caused by F. graminearum compared with symptoms in infected nontransgenic plants. However, the expression of PvPGIP2 only in the endosperm did not affect FHB symptom development, indicating that once the pathogen has reached the endosperm, inhibition of the pathogen's PG activity is not effective in preventing its further spread.
Assuntos
Fusarium/fisiologia , Micotoxinas/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Triticum/genética , Parede Celular/metabolismo , Grão Comestível/genética , Grão Comestível/imunologia , Grão Comestível/microbiologia , Endosperma/genética , Endosperma/imunologia , Endosperma/microbiologia , Flores/genética , Flores/imunologia , Flores/microbiologia , Especificidade de Órgãos , Pectinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Triticum/imunologia , Triticum/microbiologiaRESUMO
The genome of Fusarium graminearum, the causal agent of Fusarium head blight of wheat, contains two putative pectin methylesterase (PME)-encoding genes. However, when grown in liquid culture containing pectin, F. graminearum produces only a single PME, which was purified and identified. Its encoding gene, expressed during wheat spike infection, was disrupted by targeted homologous recombination. Two Δpme mutant strains lacked PME activity but were still able to grow on highly methyl-esterified pectin even though their polygalacturonase (PG) activity showed a reduced capacity to depolymerize this substrate. The enzymatic assays performed with purified F. graminearum PG and PME demonstrated an increase in PG activity in the presence of PME on highly methyl-esterified pectin. The virulence of the mutant strains was tested on Triticum aestivum and Triticum durum spikes, and a significant reduction in the percentage of symptomatic spikelets was observed between 7 and 12 days postinfection compared with wild type, demonstrating that the F. graminearum PME contributes to fungal virulence on wheat by promoting spike colonization in the initial and middle stages of infection. In contrast, transgenic wheat plants with increased levels of pectin methyl esterification did not show any increase in resistance to the Δpme mutant, indicating that the infectivity of the fungus relies only to a certain degree on pectin degradation.
Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Fusarium/enzimologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Resistência à Doença , Esterificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidade , Mutação , Pectinas/metabolismo , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Triticum/genética , Triticum/imunologiaRESUMO
Plant protein inhibitors counteract the activity of cell wall-degrading enzymes (CWDEs) secreted by pathogens to breach the plant cell-wall barrier. Transgenic plants expressing a single protein inhibitor restrict pathogen infections. However, since pathogens secrete a number of CWDEs at the onset of infection, we combined more inhibitors in a single wheat genotype to reinforce further the cell-wall barrier. We combined polygalacturonase (PG) inhibiting protein (PGIP) and pectin methyl esterase inhibitor (PMEI), both controlling the activity of PG, one of the first CWDEs secreted during infection. We also pyramided PGIP and TAXI-III, a xylanase inhibitor that controls the activity of xylanases, key factors for the degradation of xylan, a main component of cereal cell wall. We demonstrated that the pyramiding of PGIP and PMEI did not contribute to any further improvement of disease resistance. However, the presence of both pectinase inhibitors ensured a broader spectrum of disease resistance. Conversely, the PGIP and TAXI-III combination contributed to further improvement of Fusarium head blight (FHB) resistance, probably because these inhibitors target the activity of different types of CWDEs, i.e., PGs and xylanases. Worth mentioning, the reduction of FHB symptoms is accompanied by a reduction of deoxynivalenol accumulation with a foreseen great benefit to human and animal health.
Assuntos
Resistência à Doença , Fusarium/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Triticum/imunologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Poligalacturonase/antagonistas & inibidores , Poligalacturonase/genética , Poligalacturonase/metabolismo , Tricotecenos/metabolismo , Triticum/genética , Triticum/microbiologiaRESUMO
BACKGROUND: Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. RESULTS: BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. CONCLUSIONS: The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.
Assuntos
Evolução Biológica , Fabaceae/metabolismo , Glycine max/metabolismo , Modelos Biológicos , Proteínas de Plantas/metabolismo , Fabaceae/genética , Proteínas de Plantas/genética , Glycine max/genéticaRESUMO
Fusarium graminearum is a toxigenic fungal pathogen that causes Fusarium head blight (FHB) and crown rot on cereal crops worldwide. This fungus also causes damping-off and crown and root rots at the early stage of crop development in soybean cultivated in North and South America. Several F. graminearum genes were investigated for their contribution to FHB in cereals but no inherent study is reported for the dicotyledonous soybean host. In this study we determined the disease severity on soybean seedlings of five single gene disrupted mutants of F. graminearum, previously characterized in wheat spike infection. Three of these mutants are impaired on a specific function as the production of deoxynivalenol (DON, Δtri5), lipase (ΔFgl1), and xylanase (Δxyl03624), while the remaining two are MAP kinase mutants (ΔFgOS-2, Δgpmk1), which are altered in signaling pathways. The mutants that were reduced in virulence (Δtri5, ΔFgl1, and ΔFgOS-2) or are avirulent (Δgpmk1) on wheat were correspondently less virulent or avirulent in soybean seedlings, as shown by the extension of lesions and seedling lengths. The Δxyl03624 mutant was as virulent as the wild type mirroring the behavior observed in wheat. However, a different ranking of symptom severity occurred in the two hosts: the ΔFgOS-2 mutant, that infects wheat spikelets similarly to Δtri5 and ΔFgl1 mutants, provided much reduced symptoms in soybean. Differently from the other mutants, we observed that the ΔFgOS-2 mutant was several fold more sensitive to the glyceollin phytoalexin suggesting that its reduced virulence may be due to its hypersensitivity to this phytoalexin. In conclusion, lipase and DON seem important for full disease symptom development in soybean seedlings, OS-2 and Gpmk1 MAP kinases are essential for virulence, and OS-2 is involved in conferring resistance to the soybean phytoalexin.
Assuntos
Fusarium/genética , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/microbiologia , Fatores de Virulência/genética , Fusarium/efeitos dos fármacos , Fusarium/enzimologia , Fusarium/patogenicidade , Interações Hospedeiro-Patógeno , Mutação , Micotoxinas/análise , Micotoxinas/metabolismo , Pterocarpanos/isolamento & purificação , Pterocarpanos/farmacologia , Plântula/química , Plântula/microbiologia , Glycine max/química , Tricotecenos/análise , Virulência , Fatores de Virulência/metabolismoRESUMO
Cereals contain xylanase inhibitor (XI) proteins which inhibit microbial xylanases and are considered part of the defense mechanisms to counteract microbial pathogens. Nevertheless, in planta evidence for this role has not been reported yet. Therefore, we produced a number of transgenic plants constitutively overexpressing TAXI-III, a member of the TAXI type XI that is induced by pathogen infection. Results showed that TAXI-III endows the transgenic wheat with new inhibition capacities. We also showed that TAXI-III is correctly secreted into the apoplast and possesses the expected inhibition parameters against microbial xylanases. The new inhibition properties of the transgenic plants correlate with a significant delay of Fusarium head blight disease symptoms caused by Fusarium graminearum but do not significantly influence leaf spot symptoms caused by Bipolaris sorokiniana. We showed that this contrasting result can be due to the different capacity of TAXI-III to inhibit the xylanase activity of these two fungal pathogens. These results provide, for the first time, clear evidence in planta that XI are involved in plant defense against fungal pathogens and show the potential to manipulate TAXI-III accumulation to improve wheat resistance against F. graminearum.
Assuntos
Ascomicetos/fisiologia , Endo-1,4-beta-Xilanases/antagonistas & inibidores , Fusarium/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Triticum/imunologia , Ascomicetos/enzimologia , Resistência à Doença , Grão Comestível/genética , Grão Comestível/imunologia , Grão Comestível/microbiologia , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Inibidores Enzimáticos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plantas Geneticamente Modificadas , Fatores de Tempo , Triticum/genética , Triticum/metabolismo , Triticum/microbiologiaRESUMO
Black rot caused by the Gram-negative bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) is considered one of the most destructive diseases affecting crucifers. Xcc is a seedborne pathogen able to infect the host at any growth stage. The management of the pathogen mainly relies on the use of copper-based products with possible negative effects on human health and the environment. Searching for protection alternatives is crucial for achieving a sustainable management of Xcc. Trichoderma spp. has been largely used as a biocontrol agent against several phytopathogens. Among Trichoderma species, Trichoderma longibrachiatum produces the peptaibol trichogin GA IV, a secondary metabolite with antimicrobial activity against Gram-positive bacteria, as well as filamentous and yeast-like fungi. In this work, we tested, at micromolar concentrations, 25 synthetic analogs of the peptaibol trichogin GA IV for their bacteriostatic and bactericidal activity toward the bacterium Xcc. One of the most effective peptides (4r) was also tested against the Gram-negative bacteria Xanthomonas arboricola, Pseudomonas corrugata, Pseudomonas savastanoi pv. savastanoi, Agrobacterium tumefaciens, Ralstonia solanacearum, and Erwinia carotovora subsp. carotovora, as well as the Gram-positive bacterium Bacillus subtilis. The peptide 4r reduced black rot symptoms on cauliflower plants when administered both before and 24 h after inoculation with Xcc. The cytotoxic activity of the peptide 4r was also evaluated towards suspensions of tobacco cells by Evans Blue assay.
RESUMO
Peptaibols are non-ribosomal linear peptides naturally produced by a wide variety of fungi and represent the largest group of peptaibiotic molecules produced by Trichoderma species. Trichogin GA IV is an 11-residue lipopeptaibol naturally produced by Trichoderma longibrachiatum. Peptaibols possess the ability to form pores in lipid membranes or perturb their surface, and have been studied as antibiotics or anticancer drugs in human medicine, or as antimicrobial molecules against plant pathogens. When applied to plants, peptaibols may also elicit defense responses. A major drawback to the exploitation and application of peptaibols in agriculture is their poor water solubility. In a previous study, we designed water-soluble Lys-containing Trichogin GA IV analogs, which were able to inhibit the growth of several fungal plant pathogens in vitro. In the present study, we shed light on the mechanism underpinning their efficacy on plants, focusing on six Trichogin GA IV analogs. Our results highlighted peptide hydrophilicity, rather than helix stability, as the major determinant of their activity against B. cinerea infection in tomato leaves. The peptides showed preventive but not curative efficacy against infection, and lack of translaminar activity, with results reproducible on two tomato cultivars, Marmande and Micro-Tom. Reactive oxygen species (ROS) detection analysis in tomato and Arabidopsis, and expression of defense genes in tomato, highlighted a transient and limited impact of the peptides on the plant defense system. The treatment did not result in significant modulation of defense genes or defense priming. The antimicrobial effect thus emerges as the only mechanism behind the plant protection ability exerted by water-soluble Trichogin GA IV analogs, and limited effects on the plant metabolism are expected to occur.
RESUMO
The negative impact of using conventional fungicides in plant disease protection has increased the interest in safer alternatives such as plant secondary metabolites, generally having a better toxicological profile. However, cultivation conditions and plant material strongly affect the quality and quantity of secondary metabolites obtained from field grown plants, limiting the standardization needed for industrial production. Plant cell culture technology can provide highly homogeneous biomasses with specific chemical characteristics. A phytocomplex with high rosmarinic acid content (10.12% w/w) was obtained from a selected cell line of Salvia officinalis and was tested against the grapevine downy mildew pathogen, Plasmopara viticola. Grapevine leaf discs were sprayed with the phytocomplex at 5 g/L and then inoculated with P. viticola sporangia. Sporulation level on each disc was assessed after 7 days with an image processing software. The phytocomplex reduced by 95% the sporulation level compared to the control and was also more effective than rosmarinic acid alone, used at the same concentration found in the phytocomplex. Persistence of the phytocomplex was also assessed: when applied 5 days before inoculation, it reduced by 90% the sporulation level compared to the control. These results highlight the possibility to take advantage of cell culture techniques to produce safer pesticides with high quality standards.
RESUMO
The Snf1 kinase of the glucose signaling pathway controls the response to nutritional and environmental stresses. In phytopathogenic fungi, Snf1 acts as a global activator of plant cell wall degrading enzymes that are major virulence factors for plant colonization. To characterize its role in the virulence of the necrotrophic fungus Botrytis cinerea, two independent deletion mutants of the Bcsnf1 gene were obtained and analyzed. Virulence of the Δsnf1 mutants was reduced by 59% on a host with acidic pH (apple fruit) and up to 89% on hosts with neutral pH (cucumber cotyledon and French bean leaf). In vitro, Δsnf1 mutants grew slower than the wild type strain at both pH 5 and 7, with a reduction of 20-80% in simple sugars, polysaccharides, and lipidic carbon sources, and these defects were amplified at pH 7. A two-fold reduction in secretion of xylanase activities was observed consequently to the Bcsnf1 gene deletion. Moreover, Δsnf1 mutants were altered in their ability to control ambient pH. Finally, Δsnf1 mutants were impaired in asexual sporulation and did not produce macroconidia. These results confirm the importance of BcSnf1 in pathogenicity, nutrition, and conidiation, and suggest a role in pH regulation for this global regulator in filamentous fungi.
RESUMO
Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.
Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Fungos Mitospóricos/patogenicidade , Proteínas de Plantas/farmacologia , Poligalacturonase/metabolismo , Triticum/fisiologia , Actinidia/enzimologia , Actinidia/genética , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Esterificação/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Hidrólise , Fungos Mitospóricos/enzimologia , Fungos Mitospóricos/crescimento & desenvolvimento , Fungos Mitospóricos/metabolismo , Pectinas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/fisiologia , Triticum/enzimologia , Triticum/genética , Triticum/microbiologiaRESUMO
Fusarium Head Blight (FHB) and Crown Rot (FCR) are major diseases of wheat crops, causing extensive damages and mycotoxin contamination. In this work, we investigated the possibility to improve resistance to either or both diseases by combining different resistance mechanisms. To this aim, we stacked in the same wheat genotype transgenes controlling the DON-to-D3G conversion by specific UDP-glucosyltransferases (UGT) and the inhibition of cell wall degrading enzymes (CWDEs) by glycosidase inhibitors. We obtained: i) a durum wheat UGT+PMEI double-transgenic line constitutively expressing the HvUGT13248 and AcPMEI genes, coding for a barley UGT and a kiwi pectin methylesterase inhibitor, respectively; ii) a bread wheat UGT+PGIP line, expressing in floral tissues the HvUGT13248 gene and constitutively the PvPGIP2 gene, coding for a bean polygalacturonase inhibiting protein. We observed that both UGT+PMEI and UGT+PGIP plants exhibited increased resistance against Fusarium graminearum in FHB, further reducing by 10-20 % FHB symptoms as compared to the lines carrying the individual transgenes, and of up to 50 % as compared to wild-type plants. On the other hand, double-transgenic UGT+PMEI seedlings exhibited similar FCR symptoms as the UGT single transgenic line after infection with F. culmorum, indicating no contribution of the PMEI transgene to FCR resistance. This result is also supported by the inability of AcPMEI or PvPGIP2, constitutively expressed in durum wheat transgenic lines, to counteract F. graminearum in FCR. We also verified that F. graminearum produces PG and PME activity on infected wheat crown. We conclude that CWDEs inhibition combined with UGT-based DON detoxification contribute in an additive manner to limiting F. graminearum in FHB. Conversely, UGT-based DON detoxification is the only mechanism contributing to resistance observed against FCR. Indeed, the reinforcement of pectin does not enhance resistance against FCR.
Assuntos
Parede Celular/metabolismo , Resistência à Doença/genética , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Transgenes , Tricotecenos/metabolismo , Triticum/genética , Triticum/microbiologia , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genéticaRESUMO
Eco-friendly analogs of Trichogin GA IV, a short peptaibol produced by Trichoderma longibrachiatum, were assayed against Pyricularia oryzae, the causal agent of rice blast disease. In vitro and in vivo screenings allowed us to identify six peptides able to reduce by about 70% rice blast symptoms. One of the most active peptides was selected for further studies. Microscopy analyses highlighted that the treated fungal spores could not germinate and the fluorescein-labeled peptide localized on the spore cell wall and in the agglutinated cytoplasm. Transcriptomic analysis was carried out on P. oryzae mycelium 3 h after the peptide treatment. We identified 1,410 differentially expressed genes, two-thirds of which upregulated. Among these, we found genes involved in oxidative stress response, detoxification, autophagic cell death, cell wall biogenesis, degradation and remodeling, melanin and fatty acid biosynthesis, and ion efflux transporters. Molecular data suggest that the trichogin analogs cause cell wall and membrane damages and induce autophagic cell death. Ultrastructure observations on treated conidia and hyphae confirmed the molecular data. In conclusion, these selected peptides seem to be promising alternative molecules for developing effective bio-pesticides able to control rice blast disease.
RESUMO
During host plant infection, pathogens produce a wide array of cell wall degrading enzymes (CWDEs) to break the plant cell wall. Among CWDEs, xylanases are key enzymes in the degradation of xylan, the main component of hemicellulose. Targeted deletion experiments support the direct involvement of the xylanase BcXyn11a in the pathogenesis of Botrytis cinerea. Since the Triticum aestivum xylanase inhibitor-I (TAXI-I) has been shown to inhibit BcXyn11a, we verified if TAXI-I could be exploited to counteract B. cinerea infections. With this aim, we first produced Nicotiana tabacum plants transiently expressing TAXI-I, observing increased resistance to B. cinerea. Subsequently, we transformed Arabidopsis thaliana to express TAXI-I constitutively, and we obtained three transgenic lines exhibiting a variable amount of TAXI-I. The line with the higher level of TAXI-I showed increased resistance to B. cinerea and the absence of necrotic lesions when infiltrated with BcXyn11a. Finally, in a droplet application experiment on wild-type Arabidopsis leaves, TAXI-I prevented the necrotizing activity of BcXyn11a. These results would confirm that the contribution of BcXyn11a to virulence is due to its necrotizing rather than enzymatic activity. In conclusion, our experiments highlight the ability of the TAXI-I xylanase inhibitor to counteract B. cinerea infection presumably by preventing the necrotizing activity of BcXyn11a.