Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 157(2): 024302, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35840384

RESUMO

Photodissociation is one of the main destruction pathways for dicarbon (C2) in astronomical environments, such as diffuse interstellar clouds, yet the accuracy of modern astrochemical models is limited by a lack of accurate photodissociation cross sections in the vacuum ultraviolet range. C2 features a strong predissociative F1Πu-X1Σg + electronic transition near 130 nm originally measured in 1969; however, no experimental studies of this transition have been carried out since, and theoretical studies of the F1Πu state are limited. In this work, potential energy curves of excited electronic states of C2 are calculated with the aim of describing the predissociative nature of the F1Πu state and providing new ab initio photodissociation cross sections for astrochemical applications. Accurate electronic calculations of 56 singlet, triplet, and quintet states are carried out at the DW-SA-CASSCF/MRCI+Q level of theory with a CAS(8,12) active space and the aug-cc-pV5Z basis set augmented with additional diffuse functions. Photodissociation cross sections arising from the vibronic ground state to the F1Πu state are calculated by a coupled-channel model. The total integrated cross section through the F1Πu v = 0 and v = 1 bands is 1.198 × 10-13 cm2 cm-1, giving rise to a photodissociation rate of 5.02 × 10-10 s-1 under the standard interstellar radiation field, much larger than the rate in the Leiden photodissociation database. In addition, we report a new 21Σu + state that should be detectable via a strong 21Σu +-X1Σg + band around 116 nm.

2.
J Chem Phys ; 141(14): 144311, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25318726

RESUMO

We observe photoabsorption of the W(1) ← X(0) band in five carbon monoxide isotopologues with a vacuum-ultraviolet Fourier-transform spectrometer and a synchrotron radiation source. We deduce transition energies, integrated cross sections, and natural linewidths of the observed rotational transitions and find a perturbation affecting these. Following a deperturbation analysis of all five isotopologues, the perturbing state is assigned to the v = 0 level of a previously unobserved (1)Π state predicted by ab initio calculations to occur with the correct symmetry and equilibrium internuclear distance. We label this new state E″ (1)Π. Both of the interacting levels W(1) and E″(0) are predissociated, leading to dramatic interference effects in their corresponding linewidths.

3.
J Phys Chem A ; 117(39): 9644-52, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23570651

RESUMO

We present high-resolution absorption spectral measurements of the A(1)Π-X(1)Σ(+) band system of (13)C(16)O. These were recorded with the VUV Fourier transform spectrometer (VUV-FTS) installed on the DESIRS beamline at the SOLEIL synchrotron. This work includes revised term values that extend to higher J' values than previous measurements for most v' levels and lower J' values for v' = 0. We confirm previously observed perturbations of the rotational levels in greater detail and present evidence for new perturbations. The accuracy in the wavelength determination and term values is on average within 0.01 cm(-1), improving upon previous measurements.

4.
Rep Prog Phys ; 75(3): 036901, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22790424

RESUMO

An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

5.
Science ; 324(5934): 1516; author reply 1516, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19541979

RESUMO

Chakraborty et al. (Reports, 5 September 2008, p. 1328) suggested that experimental results provide support for CO photodissociation having caused the oxygen isotope ratio associated with the early solar nebula. We point out that further analysis is required before other mechanisms, such as self-shielding, are shown to be of little importance.

6.
Astrophys J ; 39(1 Pt 1): 141-3, 1992 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-11538382

RESUMO

The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.


Assuntos
Meio Ambiente Extraterreno , Formaldeído/química , Ciclotrons , Deutério/química , Hélio/química , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA