Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796681

RESUMO

MOTIVATION: Post-translational modifications (PTMs) on proteins regulate protein structures and functions. A single protein molecule can possess multiple modification sites that can accommodate various PTM types, leading to a variety of different patterns, or combinations of PTMs, on that protein. Different PTM patterns can give rise to distinct biological functions. To facilitate the study of multiple PTMs on the same protein molecule, top-down mass spectrometry (MS) has proven to be a useful tool to measure the mass of intact proteins, thereby enabling even PTMs at distant sites to be assigned to the same protein molecule and allowing determination of how many PTMs are attached to a single protein. RESULTS: We developed a Python module called MSModDetector that studies PTM patterns from individual ion mass spectrometry (I2MS) data. I2MS is an intact protein mass spectrometry approach that generates true mass spectra without the need to infer charge states. The algorithm first detects and quantifies mass shifts for a protein of interest and subsequently infers potential PTM patterns using linear programming. The algorithm is evaluated on simulated I2MS data and experimental I2MS data for the tumor suppressor protein p53. We show that MSModDetector is a useful tool for comparing a protein's PTM pattern landscape across different conditions. An improved analysis of PTM patterns will enable a deeper understanding of PTM-regulated cellular processes. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/marjanfaizi/MSModDetector.


Assuntos
Algoritmos , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Software , Espectrometria de Massas/métodos , Proteína Supressora de Tumor p53/metabolismo , Bases de Dados de Proteínas , Proteínas/metabolismo , Proteínas/química
2.
J Proteome Res ; 23(6): 1883-1893, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38497708

RESUMO

We introduce single cell Proteoform imaging Mass Spectrometry (scPiMS), which realizes the benefit of direct solvent extraction and MS detection of intact proteins from single cells dropcast onto glass slides. Sampling and detection of whole proteoforms by individual ion mass spectrometry enable a scalable approach to single cell proteomics. This new scPiMS platform addresses the throughput bottleneck in single cell proteomics and boosts the cell processing rate by several fold while accessing protein composition with higher coverage.


Assuntos
Espectrometria de Massas , Proteômica , Análise de Célula Única , Análise de Célula Única/métodos , Proteômica/métodos , Humanos , Espectrometria de Massas/métodos , Proteoma/análise
3.
Anal Chem ; 96(8): 3578-3586, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354049

RESUMO

Existing mass spectrometric assays used for sensitive and specific measurements of target proteins across multiple samples, such as selected/multiple reaction monitoring (SRM/MRM) or parallel reaction monitoring (PRM), are peptide-based methods for bottom-up proteomics. Here, we describe an approach based on the principle of PRM for the measurement of intact proteoforms by targeted top-down proteomics, termed proteoform reaction monitoring (PfRM). We explore the ability of our method to circumvent traditional limitations of top-down proteomics, such as sensitivity and reproducibility. We also introduce a new software program, Proteoform Finder (part of ProSight Native), specifically designed for the easy analysis of PfRM data. PfRM was initially benchmarked by quantifying three standard proteins. The linearity of the assay was shown over almost 3 orders of magnitude in the femtomole range, with limits of detection and quantification in the low femtomolar range. We later applied our multiplexed PfRM assay to complex samples to quantify biomarker candidates in peripheral blood mononuclear cells (PBMCs) from liver-transplanted patients, suggesting their possible translational applications. These results demonstrate that PfRM has the potential to contribute to the accurate quantification of protein biomarkers for diagnostic purposes and to improve our understanding of disease etiology at the proteoform level.


Assuntos
Leucócitos Mononucleares , Proteínas , Humanos , Leucócitos Mononucleares/química , Reprodutibilidade dos Testes , Espectrometria de Massas , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Proteoma/análise
4.
Nucleic Acids Res ; 50(D1): D526-D533, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986596

RESUMO

The Human Proteoform Atlas (HPfA) is a web-based repository of experimentally verified human proteoforms on-line at http://human-proteoform-atlas.org and is a direct descendant of the Consortium of Top-Down Proteomics' (CTDP) Proteoform Atlas. Proteoforms are the specific forms of protein molecules expressed by our cells and include the unique combination of post-translational modifications (PTMs), alternative splicing and other sources of variation deriving from a specific gene. The HPfA uses a FAIR system to assign persistent identifiers to proteoforms which allows for redundancy calling and tracking from prior and future studies in the growing community of proteoform biology and measurement. The HPfA is organized around open ontologies and enables flexible classification of proteoforms. To achieve this, a public registry of experimentally verified proteoforms was also created. Submission of new proteoforms can be processed through email vianrtdphelp@northwestern.edu, and future iterations of these proteoform atlases will help to organize and assign function to proteoforms, their PTMs and their complexes in the years ahead.


Assuntos
Processamento Alternativo , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteínas Proto-Oncogênicas p21(ras)/química , Interface Usuário-Computador , Sequência de Aminoácidos , Atlas como Assunto , Ontologia Genética , Humanos , Modelos Moleculares , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
J Proteome Res ; 22(8): 2660-2668, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37436406

RESUMO

Native mass spectrometry has recently moved alongside traditional structural biology techniques in its ability to provide clear insights into the composition of protein complexes. However, to date, limited software tools are available for the comprehensive analysis of native mass spectrometry data on protein complexes, particularly for experiments aimed at elucidating the composition of an intact protein complex. Here, we introduce ProSight Native as a start-to-finish informatics platform for analyzing native protein and protein complex data. Combining mass determination via spectral deconvolution with a top-down database search and stoichiometry calculations, ProSight Native can determine the complete composition of protein complexes. To demonstrate its features, we used ProSight Native to successfully determine the composition of the homotetrameric membrane complex Aquaporin Z. We also revisited previously published spectra and were able to decipher the composition of a heterodimer complex bound with two noncovalently associated ligands. In addition to determining complex composition, we developed new tools in the software for validating native mass spectrometry fragment ions and mapping top-down fragmentation data onto three-dimensional protein structures. Taken together, ProSight Native will reduce the informatics burden on the growing field of native mass spectrometry, enabling the technology to further its reach.


Assuntos
Proteínas , Software , Espectrometria de Massas/métodos , Proteínas/análise
6.
J Proteome Res ; 22(11): 3418-3426, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37774690

RESUMO

Blood serum and plasma are arguably the most commonly analyzed clinical samples, with dozens of proteins serving as validated biomarkers for various human diseases. Top-down proteomics may provide additional insights into disease etiopathogenesis since this approach focuses on protein forms, or proteoforms, originally circulating in blood, potentially providing access to information about relevant post-translational modifications, truncations, single amino acid substitutions, and many other sources of protein variation. However, the vast majority of proteomic studies on serum and plasma are carried out using peptide-centric, bottom-up approaches that cannot recapitulate the original proteoform content of samples. Clinical laboratories have been slow to adopt top-down analysis, also due to higher sample handling requirements. In this study, we describe a straightforward protocol for intact proteoform sample preparation based on the depletion of albumin and immunoglobulins, followed by simplified protein fractionation via polyacrylamide gel electrophoresis. After molecular weight-based fractionation, we supplemented the traditional liquid chromatography-tandem mass spectrometry (LC-MS2) data acquisition with high-field asymmetric waveform ion mobility spectrometry (FAIMS) to further simplify serum proteoform mixtures. This LC-FAIMS-MS2 method led to the identification of over 1000 serum proteoforms < 30 kDa, outperforming traditional LC-MS2 data acquisition and more than doubling the number of proteoforms identified in previous studies.


Assuntos
Espectrometria de Mobilidade Iônica , Soro , Humanos , Espectrometria de Mobilidade Iônica/métodos , Soro/química , Proteômica/métodos , Proteínas/análise , Espectrometria de Massas/métodos
7.
Anal Chem ; 95(40): 14954-14962, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37750863

RESUMO

Analysis of intact proteins by mass spectrometry enables direct quantitation of the specific proteoforms present in a sample and is an increasingly important tool for biopharmaceutical and academic research. Interpreting and quantifying intact protein species from mass spectra typically involves many challenges including mass deconvolution and peak processing as well as determining optimal spectral averaging parameters and matching masses to theoretical proteoforms. Each of these steps can present informatic hurdles, as parameters often need to be tailored specifically to the data sets. To reduce intact mass deconvolution data analysis burdens, we built upon the widely used "sliding window" mass deconvolution technique with several additional concepts. First, we found that how spectra are averaged and the overlap in spectral windows can be tuned to favor either sensitivity or speed. A multiple window averaging approach was found to be the most effective way to increase mass detection and yielded a >2-fold increase in the number of masses detected. We also developed a targeted feature-finding routine that boosted sensitivity by >2-fold, decreased coefficient of variation across replicates by 50%, and increased the quality of mass elution profiles through 3-fold more detected time points. Lastly, we furthered existing approaches for annotating detected masses with potential proteoforms through spectral fitting for possible proteoform family modifications and network viewing. These proteoform annotation approaches ultimately produced a more accurate way of finding related, but previously unknown proteoforms from intact mass-only data. Together, these quantitation workflow improvements advance the information obtainable from intact protein mass spectrometry analyses.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteoma/análise
8.
Anal Chem ; 95(23): 9090-9096, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37252723

RESUMO

The high-throughput quantification of intact proteoforms using a label-free approach is typically performed on proteins in the 0-30 kDa mass range extracted from whole cell or tissue lysates. Unfortunately, even when high-resolution separation of proteoforms is achieved by either high-performance liquid chromatography or capillary electrophoresis, the number of proteoforms that can be identified and quantified is inevitably limited by the inherent sample complexity. Here, we benchmark label-free quantification of proteoforms of Escherichia coli by applying gas-phase fractionation (GPF) via field asymmetric ion mobility spectrometry (FAIMS). Recent advances in Orbitrap instrumentation have enabled the acquisition of high-quality intact and fragmentation mass spectra without the need for averaging time-domain transients prior to Fourier transform. The resulting speed improvements allowed for the application of multiple FAIMS compensation voltages in the same liquid chromatography-tandem mass spectrometry experiment without increasing the overall data acquisition cycle. As a result, the application of FAIMS to label-free quantification based on intact mass spectra substantially increases the number of both identified and quantified proteoforms without penalizing quantification accuracy in comparison to traditional label-free experiments that do not adopt GPF.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Proteínas/análise , Cromatografia Líquida , Escherichia coli/química
9.
Nat Methods ; 17(4): 391-394, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32123391

RESUMO

An Orbitrap-based ion analysis procedure determines the direct charge for numerous individual protein ions to generate true mass spectra. This individual ion mass spectrometry (I2MS) method for charge detection enables the characterization of highly complicated mixtures of proteoforms and their complexes in both denatured and native modes of operation, revealing information not obtainable by typical measurements of ensembles of ions.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , Humanos
10.
Proteomics ; 22(11-12): e2100209, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35286768

RESUMO

The effectiveness of any proteomics database search depends on the theoretical candidate information contained in the protein database. Unfortunately, candidate entries from protein databases such as UniProt rarely contain all the post-translational modifications (PTMs), disulfide bonds, or endogenous cleavages of interest to researchers. These omissions can limit discovery of novel and biologically important proteoforms. Conversely, searching for a specific proteoform becomes a computationally difficult task for heavily modified proteins. Both situations require updates to the database through user-annotated entries. Unfortunately, manually creating properly formatted UniProt Extensible Markup Language (XML) files is tedious and prone to errors. ProSight Annotator solves these issues by providing a graphical interface for adding user-defined features to UniProt-formatted XML files for better informed proteoform searches. It can be downloaded from http://prosightannotator.northwestern.edu.


Assuntos
Idioma , Proteínas , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteômica , Software
11.
J Proteome Res ; 21(4): 1189-1195, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290070

RESUMO

It is important for the proteomics community to have a standardized manner to represent all possible variations of a protein or peptide primary sequence, including natural, chemically induced, and artifactual modifications. The Human Proteome Organization Proteomics Standards Initiative in collaboration with several members of the Consortium for Top-Down Proteomics (CTDP) has developed a standard notation called ProForma 2.0, which is a substantial extension of the original ProForma notation developed by the CTDP. ProForma 2.0 aims to unify the representation of proteoforms and peptidoforms. ProForma 2.0 supports use cases needed for bottom-up and middle-/top-down proteomics approaches and allows the encoding of highly modified proteins and peptides using a human- and machine-readable string. ProForma 2.0 can be used to represent protein modifications in a specified or ambiguous location, designated by mass shifts, chemical formulas, or controlled vocabulary terms, including cross-links (natural and chemical) and atomic isotopes. Notational conventions are based on public controlled vocabularies and ontologies. The most up-to-date full specification document and information about software implementations are available at http://psidev.info/proforma.


Assuntos
Proteoma , Proteômica , Humanos , Processamento de Proteína Pós-Traducional , Proteoma/genética , Padrões de Referência , Software
12.
J Proteome Res ; 21(1): 274-288, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34878788

RESUMO

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We applied Ig-MS to plasma from subjects with severe and mild COVID-19 and immunized subjects after two vaccine doses, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, that could use other antigens of interest to gauge immune responses to vaccination, pathogens, or autoimmune disorders.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Espectrometria de Massas , Glicoproteína da Espícula de Coronavírus/genética
13.
J Am Chem Soc ; 144(50): 23104-23114, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475650

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in humans. They mediate nearly all aspects of human physiology and thus are of high therapeutic interest. GPCR signaling is regulated in space and time by receptor phosphorylation. It is believed that different phosphorylation states are possible for a single receptor, and each encodes for unique signaling outcomes. Methods to determine the phosphorylation status of GPCRs are critical for understanding receptor physiology and signaling properties of GPCR ligands and therapeutics. However, common proteomic techniques have provided limited quantitative information regarding total receptor phosphorylation stoichiometry, relative abundances of isomeric modification states, and temporal dynamics of these parameters. Here, we report a novel middle-down proteomic strategy and parallel reaction monitoring (PRM) to quantify the phosphorylation states of the C-terminal tail of metabotropic glutamate receptor 2 (mGluR2). By this approach, we found that mGluR2 is subject to both basal and agonist-induced phosphorylation at up to four simultaneous sites with varying probability. Using a PRM tandem mass spectrometry methodology, we localized the positions and quantified the relative abundance of phosphorylations following treatment with an agonist. Our analysis showed that phosphorylation within specific regions of the C-terminal tail of mGluR2 is sensitive to receptor activation, and subsequent site-directed mutagenesis of these sites identified key regions which tune receptor sensitivity. This study demonstrates that middle-down purification followed by label-free quantification is a powerful, quantitative, and accessible tool for characterizing phosphorylation states of GPCRs and other challenging proteins.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/química , Fosforilação , Transdução de Sinais/fisiologia , Ligantes , Proteômica , Espectrometria de Massas , Proteínas de Transporte/metabolismo
14.
Mol Cell Proteomics ; 19(2): 405-420, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31888965

RESUMO

Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.


Assuntos
Proteômica/métodos , Raios Ultravioleta , Animais , Anidrases Carbônicas , Células Cultivadas , Cromatografia Líquida , Fibroblastos , Proteínas Fúngicas , Humanos , Camundongos , Miócitos Cardíacos , Mioglobina , Fótons , Pseudomonas aeruginosa , Espectrometria de Massas em Tandem , Ubiquitina
15.
Angew Chem Int Ed Engl ; 61(29): e202200721, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35446460

RESUMO

Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform-specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) for the proteoform-selective imaging of biological tissues. Nano-DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof-of-concept experiments demonstrate that nano-DESI MSI combined with on-tissue top-down proteomics is ideally suited for the proteoform-selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Animais , Íons , Proteoma/análise , Proteômica/métodos , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
16.
Mol Cell Proteomics ; 18(4): 796-805, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30647073

RESUMO

Within the last several years, top-down proteomics has emerged as a high throughput technique for protein and proteoform identification. This technique has the potential to identify and characterize thousands of proteoforms within a single study, but the absence of accurate false discovery rate (FDR) estimation could hinder the adoption and consistency of top-down proteomics in the future. In automated identification and characterization of proteoforms, FDR calculation strongly depends on the context of the search. The context includes MS data quality, the database being interrogated, the search engine, and the parameters of the search. Particular to top-down proteomics-there are four molecular levels of study: proteoform spectral match (PrSM), protein, isoform, and proteoform. Here, a context-dependent framework for calculating an accurate FDR at each level was designed, implemented, and validated against a manually curated training set with 546 confirmed proteoforms. We examined several search contexts and found that an FDR calculated at the PrSM level under-reported the true FDR at the protein level by an average of 24-fold. We present a new open-source tool, the TDCD_FDR_Calculator, which provides a scalable, context-dependent FDR calculation that can be applied post-search to enhance the quality of results in top-down proteomics from any search engine.


Assuntos
Proteômica/métodos , Algoritmos , Bases de Dados de Proteínas , Humanos , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos Testes
17.
Proc Natl Acad Sci U S A ; 115(16): 4140-4145, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610327

RESUMO

Mutations of the KRAS gene are found in human cancers with high frequency and result in the constitutive activation of its protein products. This leads to aberrant regulation of downstream pathways, promoting cell survival, proliferation, and tumorigenesis that drive cancer progression and negatively affect treatment outcomes. Here, we describe a workflow that can detect and quantify mutation-specific consequences of KRAS biochemistry, namely linked changes in posttranslational modifications (PTMs). We combined immunoaffinity enrichment with detection by top-down mass spectrometry to discover and quantify proteoforms with or without the Gly13Asp mutation (G13D) specifically in the KRAS4b isoform. The workflow was applied first to isogenic KRAS colorectal cancer (CRC) cell lines and then to patient CRC tumors with matching KRAS genotypes. In two cellular models, a direct link between the knockout of the mutant G13D allele and the complete nitrosylation of cysteine 118 of the remaining WT KRAS4b was observed. Analysis of tumor samples quantified the percentage of mutant KRAS4b actually present in cancer tissue and identified major differences in the levels of C-terminal carboxymethylation, a modification critical for membrane association. These data from CRC cells and human tumors suggest mechanisms of posttranslational regulation that are highly context-dependent and which lead to preferential production of specific KRAS4b proteoforms.


Assuntos
Neoplasias Colorretais/enzimologia , Mutação de Sentido Incorreto , Proteínas de Neoplasias/análise , Mutação Puntual , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/análise , Sequência de Aminoácidos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cromatografia Líquida , Neoplasias Colorretais/genética , Cisteína/química , Humanos , Metilação , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Nitrosação , Prenilação , Conformação Proteica , Proteômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/isolamento & purificação , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
18.
Proteomics ; 19(10): e1800361, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31050378

RESUMO

A proteoform is a defined form of a protein derived from a given gene with a specific amino acid sequence and localized post-translational modifications. In top-down proteomic analyses, proteoforms are identified and quantified through mass spectrometric analysis of intact proteins. Recent technological developments have enabled comprehensive proteoform analyses in complex samples, and an increasing number of laboratories are adopting top-down proteomic workflows. In this review, some recent advances are outlined and current challenges and future directions for the field are discussed.


Assuntos
Aminoácidos/análise , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Animais , Biologia Computacional , Eletroforese Capilar , Humanos , Linguagens de Programação , Reprodutibilidade dos Testes , Software
19.
J Proteome Res ; 18(11): 3999-4012, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550894

RESUMO

Cocaine addiction afflicts nearly 1 million adults in the United States, and to date, there are no known treatments approved for this psychiatric condition. Women are particularly vulnerable to developing a cocaine use disorder and suffer from more serious cardiac consequences than men when using cocaine. Estrogen is one biological factor contributing to the increased risk for females to develop problematic cocaine use. Animal studies have demonstrated that estrogen (17ß-estradiol or E2) enhances the rewarding properties of cocaine. Although E2 affects the dopamine system, the molecular and cellular mechanisms of E2-enhanced cocaine reward have not been characterized. In this study, quantitative top-down proteomics was used to measure intact proteins in specific regions of the female mouse brain after mice were trained for cocaine-conditioned place preference, a behavioral test of cocaine reward. Several proteoform changes occurred in the ventral tegmental area after combined cocaine and E2 treatments, with the most numerous proteoform alterations on myelin basic protein, indicating possible changes in white matter structure. There were also changes in histone H4, protein phosphatase inhibitors, cholecystokinin, and calmodulin proteoforms. These observations provide insight into estrogen signaling in the brain and may guide new approaches to treating women with cocaine use disorder.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Estradiol/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Animais , Encéfalo/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Estrogênios/farmacologia , Feminino , Camundongos Endogâmicos C57BL , Ovariectomia , Recompensa , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
20.
Anal Chem ; 91(24): 15732-15739, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31714757

RESUMO

Despite the recent technological advances in Fourier transform mass spectrometry (FTMS) instrumentation, top-down proteomics (TDP) is currently mostly applied to the characterization of proteoforms <30 kDa due to the poor performance of high-resolution FTMS for the analysis of larger proteoforms and the high complexity of intact proteomes in the 30-60 kDa mass range. Here, we propose a novel data acquisition method based on ion-ion proton transfer, herein termed proton transfer charge reduction (PTCR), to investigate large proteoforms of Pseudomonas aeruginosa in a high-throughput fashion. We designed a targeted data acquisition strategy, named tPTCR, which applies two consecutive gas phase fractionation steps for obtaining intact precursor masses: first, a narrow (1.5 m/z-wide) quadrupole filter m/z transmission window is used to select a subset of charge states from all ionized proteoform cations; second, this aliquot of protein cations is subjected to PTCR in order to reduce their average charge state: upon m/z analysis in an Orbitrap, proteoform mass spectra with minimal m/z peak overlap and easy-to-interpret charge state distributions are obtained, simplifying the proteoform mass calculation. Subsequently, the same quadrupole-selected narrow m/z region of analytes is subjected to collisional dissociation to obtain proteoform sequence information, which used in combination with intact mass information leads to proteoform identification through an off-line database search. The newly proposed method was benchmarked against the previously developed "medium/high" data-dependent acquisition strategy and doubled the number of UniProt entries and proteoforms >30 kDa identified on the liquid chromatography time scale.


Assuntos
Proteínas de Bactérias/metabolismo , Cromatografia Líquida/métodos , Proteoma/análise , Prótons , Pseudomonas aeruginosa/metabolismo , Software , Espectrometria de Massas em Tandem/métodos , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA