Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Asthma ; 58(8): 1003-1012, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32329381

RESUMO

OBJECTIVES: Bronchial asthma can be effectively controlled but not be cured, its etiology and pathogenesis are still unclear, and there are no effective preventive measures. The key characteristic of asthma is chronic airway inflammation, and recent research has found that airway neurogenic inflammation plays an important role in asthma. We previously found that Mycobacterium vaccae nebulization protects against asthma. Therefore, this objective of this study is to explore the effect of M. vaccae nebulization on asthmatic neural mechanisms. METHODS: A total 18 of female Balb/c mice were randomized into normal, asthma control, and M. vaccae nebulization (Neb.group) groups, and mice in the Neb.group were nebulized with M. vaccae one month before the asthmatic model was established. Then, 1 month later, the mice were sensitized and challenged with ovalbumin. Twenty-four hours after the last challenge, mouse airway responsiveness; pulmonary brain-derived neurotropic factor (BDNF), neurofilament-medium length (NF-M, using NF09 antibody), and acetylcholine expression; and nerve growth factor (NGF) mRNA level were determined. RESULTS: We found that the BDNF, NF09, acetylcholine expression, and NGF mRNA level were decreased in the Neb.group compared with levels in the asthma control group. CONCLUSION: M. vaccae nebulization may protected in Balb/c mice against bronchial asthma through neural mechanisms.


Assuntos
Asma/prevenção & controle , Mycobacteriaceae , Acetilcolina/análise , Animais , Asma/metabolismo , Asma/patologia , Fator Neurotrófico Derivado do Encéfalo/análise , Feminino , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fator de Crescimento Neural/análise , Fator de Crescimento Neural/genética
2.
J Aerosol Med Pulm Drug Deliv ; 33(5): 249-257, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32301643

RESUMO

Background: Respiratory syncytial virus (RSV) infection is the most common cause of acute lower respiratory tract infection in children, leading to their death. Currently, no effective prevention and treatment methods for RSV infection are available. RSV and many other unknown viruses pose a serious threat to human health. Our previous study demonstrated that Mycobacterium vaccae nebulization can protect against allergic asthma. As RSV infection and asthma are closely related, we hypothesized that M. vaccae could protect against pulmonary RSV infection. Therefore, we evaluated the effect of M. vaccae on RSV infection in Balb/c mice. Methods: The mice were randomized into three groups: normal, RSV, and M. vaccae. One week before the RSV infection model was established, the mice in the M. vaccae group were nebulized with M. vaccae. On the fourth day after RSV infection, airway responsiveness, airway inflammation, pulmonary RSV infection, mRNA levels of pulmonary toll-like receptor (TLR) 7 and TLR8, and pulmonary NF09, acetylcholine, and epidermal growth factor regulator (EGFR) expression levels in all mice were measured. Results: The airway inflammation in the M. vaccae group was alleviated compared with that in the RSV group. In the M. vaccae group, the pulmonary mRNA level of RSV and the pulmonary expression levels of NF09, acetylcholine, and EGFR were decreased considerably, whereas the mRNA levels of TLR7 and TLR8 were increased significantly. Conclusions: One-week nebulization of M. vaccae can protect against RSV infection in Balb/c mice. The mechanism involves the regulation of neurotransmitters and expression of TLR7, TLR8, and EGFR.


Assuntos
Pulmão/virologia , Mycobacteriaceae/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Administração por Inalação , Animais , Receptores ErbB/genética , Feminino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-32834825

RESUMO

BACKGROUND: Mycobacterium vaccae nebulization imparted protective effect against allergic asthma in a mouse model. The TGF-ß/Smad signal transduction pathway plays an important role in allergic bronchial asthma. However, the effect of M. vaccae nebulization on the TGF-ß/Smad signal transduction pathway in mouse models of allergic asthma remains unclear. This study investigated the preventive effect of M. vaccae nebulization during bronchial asthma in a mouse model and elucidate the implication of TGF-ß/Smad signal transduction pathway in the process. METHODS: In total, 24 female Balb/c mice were randomized to normal control (group A), asthma control (group B), and M. vaccae nebulization (group C) groups. Both groups B and C were sensitized using ovalbumin for establishment of the asthmatic model; group A received phosphate-buffered solution. Prior to the establishment of asthma, Group C was nebulized with M. vaccae. Airway responsiveness was measured in all the groups, using a noninvasive lung function machine before and 24 h after establishment of the asthmatic model. The animals were then harvested, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The total cell counts in BALF was estimated. Protein expression of TGF-ß1, TßR1, Smad1, and Smad7 was detected by immunohistochemistry. The population of CD3 + γδT, IL-13 + CD3 + T, TGF-ß + CD3 + T, IL-13 + CD3 + γδT, and TGF-ß+ CD3+ γδT cells were detected by flow cytometry. One-way analysis of variance for within-group comparisons, the least significant difference t-test or Student-Newman-Keuls test for intergroup comparisons, and the nonparametric rank sum test for analysis of airway inflammation scores were used in the study. RESULTS: The eosinophil count; protein expression of TGF-ß1, TßR1, and Smad1; and percentages of CD3 + γδT and IL-13 + CD3 + T cells were significantly lower in the M. vaccae nebulization group than in the asthma control group (P < 0.01). There were significant intergroup differences in the percentages of TGF-ß + CD3 + T and IL-13 + CD3 + γδT cells (P < 0.05). CONCLUSIONS: Mycobacterium vaccae nebulization could confer protection against allergic bronchial asthma by reducing airway responsiveness and alleviating airway inflammation in mice. The underlying mechanism might be attributed its effect on the deregulated expression of TGF-ß1, TßR1, Smad1, and Smad7 of the TGF-ß/Smad signal transduction pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA