Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chaos ; 34(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848270

RESUMO

Spatial evolutionary games provide a valuable framework for elucidating the emergence and maintenance of cooperative behaviors. However, most previous studies assume that individuals are profiteers and neglect to consider the effects of memory. To bridge this gap, in this paper, we propose a memory-based spatial evolutionary game with dynamic interaction between learners and profiteers. Specifically, there are two different categories of individuals in the network, including profiteers and learners with different strategy updating rules. Notably, there is a dynamic interaction between profiteers and learners, i.e., each individual has the transition probability between profiteers and learners, which is portrayed by a Markov process. Besides, the payoff of each individual is not only determined by a single round of the game but also depends on the memory mechanism of the individual. Extensive numerical simulations validate the theoretical analysis and uncover that dynamic interactions between profiteers and learners foster cooperation, memory mechanisms facilitate the emergence of cooperative behaviors among profiteers, and increasing the learning rate of learners promotes a rise in the number of cooperators. In addition, the robustness of the model is verified through simulations across various network sizes. Overall, this work contributes to a deeper understanding of the mechanisms driving the formation and evolution of cooperation.

2.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363961

RESUMO

While actors in a population can interact with anyone else freely, social relations significantly influence our inclination toward particular individuals. The consequence of such interactions, however, may also form the intensity of our relations established earlier. These dynamical processes are captured via a coevolutionary model staged in multiplex networks with two distinct layers. In a so-called relationship layer, the weights of edges among players may change in time as a consequence of games played in the alternative interaction layer. As an reasonable assumption, bilateral cooperation confirms while mutual defection weakens these weight factors. Importantly, the fitness of a player, which basically determines the success of a strategy imitation, depends not only on the payoff collected from interactions, but also on the individual relationship index calculated from the mentioned weight factors of related edges. Within the framework of weak prisoner's dilemma situation, we explore the potential outcomes of the mentioned coevolutionary process where we assume different topologies for relationship layer. We find that higher average degree of the relationship graph is more beneficial to maintain cooperation in regular graphs, but the randomness of links could be a decisive factor in harsh situations. Surprisingly, a stronger coupling between relationship index and fitness discourage the evolution of cooperation by weakening the direct consequence of a strategy change. To complete our study, we also monitor how the distribution of relationship index vary and detect a strong relation between its polarization and the general cooperation level.

3.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341764

RESUMO

The emergence of the evolutionary game on complex networks provides a fresh framework for studying cooperation behavior between complex populations. Numerous recent progress has been achieved in studying asymmetric games. However, there is still a substantial need to address how to flexibly express the individual asymmetric nature. In this paper, we employ mutual cognition among individuals to elucidate the asymmetry inherent in their interactions. Cognition arises from individuals' subjective assessments and significantly influences their decision-making processes. In social networks, mutual cognition among individuals is a persistent phenomenon and frequently displays heterogeneity as the influence of their interactions. This unequal cognitive dynamic will, in turn, influence the interactions, culminating in asymmetric outcomes. To better illustrate the inter-individual cognition in asymmetric snowdrift games, the concept of favor value is introduced here. On this basis, the evolution of cognition and its relationship with asymmetry degree are defined. In our simulation, we investigate how game cost and the intensity of individual cognitive changes impact the cooperation frequency. Furthermore, the temporal evolution of individual cognition and its variation under different parameters was also examined. The simulation results reveal that the emergence of heterogeneous cognition effectively addresses social dilemmas, with asymmetric interactions among individuals enhancing the propensity for cooperative choices. It is noteworthy that distinctions exist in the rules governing cooperation and cognitive evolution between regular networks and Watts-Strogatz small-world networks. In light of this, we deduce the relationship between cognition evolution and cooperative behavior in co-evolution and explore potential factors influencing cooperation within the system.


Assuntos
Cognição , Teoria dos Jogos , Humanos , Simulação por Computador , Comportamento Cooperativo , Rede Social , Evolução Biológica
4.
Entropy (Basel) ; 25(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136523

RESUMO

Networks are omnipresent in the realm of science, serving as a central focus in our modern world [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA