Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Microbiol ; 78(11): 3891-3900, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510224

RESUMO

Ammonium sulfate wastewater can cause eutrophication and black odor of water body. Although ammonia nitrogen can be used as nutrient of microalgae, high ammonia nitrogen levels could inhibit the growth of microalgae. Nitrobacteria can transform ammonia nitrogen into nitrate nitrogen. In this study, mono Chlorella pyrenoidosa culture (mono-C.py), synchronous mixed culture (mixed-a), and asynchronous mixed culture (mixed-b) systems were examined for their ability to treat ammonium sulfate wastewater. Nitrogen removal rate of mixed-b at the end of culture (52.96%) was higher than that of the mono-C.py (46.37%) and the mixed-a (39.11%). Higher total suspended solid concentration (2.40 g/L), crude protein yield (0.76 g/L), and heating value yield (35.73 kJ/L) were obtained in mixed-b, meanwhile with excellent settlement performance (91.43 ± 0.51%). Mechanism analysis of settlement showed that the relative abundance of floc-forming-related bacteria Sphingopyxis and Acidovorax were increased generally, while nitrification/denitrifying members were decreased in mixed-b along with the culture proceeding.


Assuntos
Chlorella , Microalgas , Sulfato de Amônio , Biomassa , Águas Residuárias
2.
Environ Sci Pollut Res Int ; 29(3): 3406-3416, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34389951

RESUMO

Ammonia inhibition is considered a key issue when using liquid digestate for microalgae cultivation. To study the effect of pretreatment with a biological aerated filter (BAF) on microalgae culture with dairy liquid digestate, nitrification characteristics of BAFs under different hydraulic retention time (HRT) and the growth characteristics of Chlorella pyrenoidosa in effluents of BAFs were investigated. Results showed that the BAFs can rapidly nitrify ammonia nitrogen and significantly improve the light transmittance of liquid digestate (the maximum promotion rate was ~260%), and the effect improved as the HRT increased. Pretreatment of liquid digestate with BAFs can eliminate ammonia inhibition for C. pyrenoidosa. Furthermore, lipid, crude protein, and higher heating value (HHV) output were also not affected by HRT. The similar removal of nitrate nitrogen in microalgae culture systems using effluents with 6-h and 12-h HRT (21.59% and 21.07%, respectively) were recorded. The results suggested that BAF coupled with microalgae culture is a novel option on the resource utilization of dairy liquid digestate.


Assuntos
Chlorella , Microalgas , Amônia , Biomassa , Nitrificação , Nitrogênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA