Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686321

RESUMO

Bendamustine (BENDA) is a bifunctional alkylating agent with alkylating and purinergic antitumor activity, which exerts its anticancer effects by direct binding to DNA, but the detailed mechanism of BENDA-DNA interaction is poorly understood. In this paper, the interaction properties of the anticancer drug BENDA with calf thymus DNA (ctDNA) were systematically investigated based on surface-enhanced Raman spectroscopy (SERS) technique mainly using a novel homemade AuNPs/ZnCl2/NpAA (NpAA: nano porous anodic alumina) solid-state substrate and combined with ultraviolet-visible spectroscopy and molecular docking simulation to reveal the mechanism of their interactions. We experimentally compared and studied the SERS spectra of ctDNA, BENDA, and BENDA-ctDNA complexes with different molar concentrations (1:1, 2:1, 3:1), and summarized their important characteristic peak positions, their peak position differences, and hyperchromic/hypochromic effects. The results showed that the binding modes include covalent binding and hydrogen bonding, and the binding site of BENDA to DNA molecules is mainly the N7 atom of G base. The results of this study help to understand and elucidate the mechanism of BENDA at the single-molecule level, and provide guidance for the further development of effective new drugs with low toxicity and side effects.


Assuntos
Ouro , Nanopartículas Metálicas , Cloridrato de Bendamustina , Simulação de Acoplamento Molecular , Análise Espectral Raman , DNA
2.
Anal Chem ; 94(51): 17913-17921, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36519957

RESUMO

Nonlinearity of electroosmotic flows (EOFs) is ubiquitous and plays a crucial role in ion transport, specimen mixing, electrochemistry reaction, and electric energy storage and utilization. When and how the transition from a linear regime to a nonlinear one occurs is essential for understanding, prohibiting, or utilizing nonlinear EOF. However, due to the lack of reliable experimental instruments with high spatial and temporal resolutions, the investigation of the onset of nonlinear EOF still remains in theory. Herein, we experimentally studied the velocity fluctuations of EOFs driven by an alternating current (AC) electric field via ultrasensitive fluorescent blinking tricks. The linear and nonlinear AC EOFs are successfully identified from both the time trace and energy spectra of velocity fluctuations. The transitional electric field (EA,C) is determined by both the convection velocity (U) and AC frequency (ff) as EA,C ∼ ff0.48-0.027U. We hope the current investigation could be essential in the development of both theory and applications of nonlinear EOFs.


Assuntos
Eletricidade , Eletro-Osmose , Eletroquímica , Transporte de Íons
3.
Langmuir ; 38(5): 1716-1724, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35089718

RESUMO

The interactions of DNA molecules and metal ions lead to changes in their configuration and conformation, which in turn influence the current characteristics of the solution as DNA molecules are translocated through a micro/nanofluidic channel and ultimately cause serious impacts on the practical applications of DNA/gene chips for precisely manipulating and studying the molecular properties of single DNA molecules. In this study, the current characteristics of λ-DNA solutions without or with metal ions (i.e., K+, Na+, Mg2+, and Ca2+) were experimentally investigated when they were transported through a 5 µm microcapillary under an external electric field with asymmetric electrodes. Experimental data indicated some meaningful results. First, the current-voltage relations of the metal ion solutions were all linear, while those of λ-DNA solutions without or with metal ions were all nonlinear and followed power functions, of which the indices were related to the type, valence, and mobility of ions. Furthermore, as the concentrations of metal ions increased, the power indices of the λ-DNA solutions with monovalent metal ions increased, while those of the λ-DNA solutions with divalent ions decreased. Finally, the main reasons for the current characteristics were theoretically attributed to two possible mechanisms: the polarizations on the asymmetric electrodes and the interactions between λ-DNA and metal ions. These findings are helpful for the design of new biomedical micro/nanofluidic sensors and labs on a chip for accurately manipulating single DNA molecules.


Assuntos
DNA , Microfluídica , Cátions Bivalentes , Íons , Metais
4.
Langmuir ; 37(18): 5457-5463, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900784

RESUMO

A ZnO/ZnCl2 composite with stable 3D structural morphologies and long lasting superhydrophilicity was synthesized on the top surface of a nano porous anodic alumina (nanoPAA) substrate. The wettability of a nanoPAA-ZnO/ZnCl2 was systematically characterized and the experimental data indicated that the water contact angle (WCA) of 0° could be achieved as well as maintained over 7 days and still remained at 4.36° after 50 days, and its 3D structural morphology had no clearly observable change during this period. The mechanism for the superhydrophilicity of the composites was interpreted in terms of the inherent hydrophilicity of ZnO/ZnCl2 nanofilm, the three-dimensional structures of wrinkled nanoflakes, the nanogaps between neighbor nanoflakes, the difference of structual morphologies (i.e., size, shape, and upright posture of nanoflakes), and the measured True Volume of voids in the nanocomposite. The structural morphologies were mainly determined by the parameters such as the original concentration of precursor ZnCl2 and the pore diameter of nanoPAA substrate. The study proposes a promising superhydrophilic nanomaterial and a cost-effective synthesis method, which will play a practical role in the fields of biomedical molecular sensors and micro/nanofluidic chips.

5.
BMC Immunol ; 21(1): 23, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349664

RESUMO

BACKGROUND: CD8+CD28- T suppressor (Ts) cells play critical role in transplant tolerance. Our previous study has generated CD8+CD28- Ts cells in vitro which exert robust allospecific suppressive capacity in vitro. RESULTS: CD8+CD28- Ts cells were expanded by stimulating human CD8+ T cells with allogeneic antigen presenting cells in the presence of the common gamma chain cytokines IL-2, IL-7 and IL-15 in vitro, and were further verified in vitro through day 7 to 11 for their persistency of the allospecific suppressive capacity. When CD8+CD28- Ts cells were adoptively transferred into NOG mice, their capacity to inhibit CD4+ T cell proliferation in allospecific manner remained potent on 11 days after their injection. The mechanisms for expansion of CD8+CD28- Ts cells by the common gamma chain cytokines were investigated. These included promoting CD8+CD28- T cells proliferation, converting CD8+CD28+ T cells to CD8+CD28- T cells and decreasing CD8+CD28- T cell death. Furthermore, the expanded CD8+CD28- Ts cells showed upregulation of the co-inhibitory molecule Tim-3 and down-regulation of the cytotoxic molecule granzyme B. CONCLUSIONS: In summary, these results demonstrated that the in vitro-expanded human CD8+CD28- T cells retained potent allospecific suppressive capacity in vivo and depicted multiple mechanisms for the expansion of Ts cells, which might promote further bench to clinic research.


Assuntos
Antígenos CD28/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Morte Celular/imunologia , Proliferação de Células/fisiologia , Regulação para Baixo/imunologia , Feminino , Granzimas/imunologia , Humanos , Camundongos , Regulação para Cima/imunologia
6.
Cancer Cell Int ; 20: 27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002016

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) comprises the majority of kidney cancer death worldwide, whose incidence and mortality are not promising. Identifying ideal biomarkers to construct a more accurate prognostic model than conventional clinical parameters is crucial. METHODS: Raw count of RNA-sequencing data and clinicopathological data were acquired from The Cancer Genome Atlas (TCGA). Tumor samples were divided into two sets. Differentially expressed genes (DEGs) were screened in the whole set and prognosis-related genes were identified from the training set. Their common genes were used in LASSO and best subset regression which were performed to identify the best prognostic 5 genes. The gene-based risk score was developed based on the Cox coefficient of the individual gene. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival analysis were used to assess its prognostic power. GSE29609 dataset from GEO (Gene Expression Omnibus) database was used to validate the signature. Univariate and multivariate Cox regression were performed to screen independent prognostic parameters to construct a nomogram. The predictive power of the nomogram was revealed by time-dependent ROC curves and the calibration plot and verified in the validation set. Finally, Functional enrichment analysis of DEGs and 5 novel genes were performed to suggest the potential biological pathways. RESULTS: PADI1, ATP6V0D2, DPP6, C9orf135 and PLG were screened to be significantly related to the prognosis of ccRCC patients. The risk score effectively stratified the patients into high-risk group with poor overall survival (OS) based on survival analysis. AJCC-stage, age, recurrence and risk score were regarded as independent prognostic parameters by Cox regression analysis and were used to construct a nomogram. Time-dependent ROC curves showed the nomogram performed best in 1-, 3- and 5-year survival predictions compared with AJCC-stage and risk score in validation sets. The calibration plot showed good agreement of the nomogram between predicted and observed outcomes. Functional enrichment analysis suggested several enriched biological pathways related to cancer. CONCLUSIONS: In our study, we constructed a gene-based model integrating clinical prognostic parameters to predict prognosis of ccRCC well, which might provide a reliable prognosis assessment tool for clinician and aid treatment decision-making in the clinic.

7.
Adv Mater ; 36(2): e2304708, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37452605

RESUMO

Atomically thin two-dimensional (2D) oxide crystals have garnered considerable attention because of their remarkable physical properties and potential for versatile applications. In recent years, significant advancements have been made in the design, preparation, and application of ultrathin 2D oxides, providing many opportunities for new-generation advanced technologies. This review focuses on the controllable preparation of 2D oxide crystals and their applications in electronic and optoelectronic devices. Based on their bonding nature, the various types of 2D oxide crystals are first summarized, including both layered and nonlayered crystals, as well as their current top-down and bottom-up synthetic approaches. Subsequently, in terms of the unique physical and electrical properties of 2D oxides, recent advances in device applications are emphasized, including photodetectors, field-effect transistors, dielectric layers, magnetic and ferroelectric devices, memories, and gas sensors. Finally, conclusions and future prospects of 2D oxide crystals are presented. It is hoped that this review will provide comprehensive and insightful guidance for the development of 2D oxide crystals and their device applications.

8.
Heliyon ; 10(9): e30233, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707315

RESUMO

Docetaxel (DOC) is one of the second-generation antineoplastic drugs of the taxanes family with excellent antitumor activity. However, the mechanism of DOC inducing tumor cell apoptosis and treating cancer diseases, especially its interaction with DNA in the nucleus, and its adjuvant or combined Doxorubicin (DOX) acting on DNA molecules are unclear. In this study, the interaction mechanism between DOC and DNA, as well as the synergistic effects and competitive relationships among DOC and DOX when they simultaneously interact with DNA molecules were studied by laser confocal Raman spectroscopy combined with UV-visible absorption spectroscopy and molecular docking technology. The spectroscopic results showed that the binding constant of DOC to DNA is 5.25 × 103 M-1, the binding modes of DOC and DNA are non-classical intercalation and electrostatic binding, and the DNA-DOC complex has good stability. When DOC or DOX interacts with DNA alone, both of them can bind with bases and phosphate backbone of DNA, and also lead to DNA conformation changes; when DOC and DOX interact with DNA at the same time, the orders of interaction not only affect their binding sites with DNA, but also cause changes in the surrounding environment of the binding sites. In addition, the molecular docking results further verified that DOC and DOX have synergy and competition when they interact with DNA molecules simultaneously. The docking energies of DNA-DOC and DNA-DOX indicate the important role of van der Waals forces and hydrogen bonds. This study has practical significance for the design and development of antitumor drugs with less toxic based on the taxanes family and the combination with other drugs for the treatment of cancer.

9.
Cancer Biol Ther ; 25(1): 2355705, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38778753

RESUMO

Triple-negative breast Cancer (TNBC) is an aggressive subtype lacking estrogen, progesterone, and HER2 receptors. Known for limited targeted therapies, it poses challenges and requires personalized treatment strategies. Differential analysis revealed a significant decrease in keratin 81 (KRT81) expression in non-TNBC samples and an increase in TNBC samples, lower KRT81 expression correlated with better TNBC patient outcomes. It emerged as an independent predictive factor for TNBC, with associations found between its expression and clinically relevant features. We further developed a nomogram for survival probability assessment based on Cox regression results, demonstrating its accuracy through calibration curves. Gene annotation analysis indicated that KRT81 is involved in immune-related pathways and tumor cell adhesion. KRT81 is associated with immune cell infiltration of Follicular helper T cells (Tfh) and CD8 + T cells, suggesting its potential impact on the immunological microenvironment. The study delved into KRT81's predictive value for immunotherapy responses, high expression of KRT81 was associated with greater potential for immune evasion. Single-cell RNA sequencing analysis pinpointed KRT81 expression within a specific malignant subtype which was a risk factor for TNBC. Furthermore, KRT81 promoted TNBC cell proliferation, migration, invasion, and adhesion was confirmed by gene knockout or overexpression assay. Co-culture experiments further indicated KRT81's potential role in inhibiting CD8 + T cells, and correlation analysis implied KRT81 was highly correlated with immune checkpoint CD276, providing insights into its involvement in the immune microenvironment via CD276. In conclusion, this comprehensive study positions KRT81 as a promising prognostic marker for predicting tumor progression and immunotherapy responses in TNBC.


Assuntos
Biomarcadores Tumorais , Linfócitos T CD8-Positivos , Imunoterapia , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Humanos , Prognóstico , Feminino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
10.
ACS Nano ; 18(11): 7739-7768, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456396

RESUMO

Silicon transistors are approaching their physical limit, calling for the emergence of a technological revolution. As the acknowledged ultimate version of transistor channels, 2D semiconductors are of interest for the development of post-Moore electronics due to their useful properties and all-in-one potentials. Here, the promise and current status of 2D semiconductors and transistors are reviewed, from materials and devices to integrated applications. First, we outline the evolution and challenges of silicon-based integrated circuits, followed by a detailed discussion on the properties and preparation strategies of 2D semiconductors and van der Waals heterostructures. Subsequently, the significant progress of 2D transistors, including device optimization, large-scale integration, and unconventional devices, are presented. We also examine 2D semiconductors for advanced heterogeneous and multifunctional integration beyond CMOS. Finally, the key technical challenges and potential strategies for 2D transistors and integrated circuits are also discussed. We envision that the field of 2D semiconductors and transistors could yield substantial progress in the upcoming years and hope this review will trigger the interest of scientists planning their next experiment.

11.
ACS Nano ; 18(11): 8475-8483, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456704

RESUMO

The magnetic skyrmions exhibit intriguing topological behaviors, holding promise for future applications in the realm of spintronic devices. Despite recent advancements, achieving spontaneous magnetic skyrmions and topological transitions in magnets featuring uniaxial magnetic anisotropy, particularly at elevated temperatures (>100 K), remains a challenging endeavor. Here, single-crystal Fe5Si3 nanorods with the central symmetry and uniaxial magnetic anisotropy were successfully synthesized on a mica substrate through chemical vapor deposition, which exhibit a high Curie temperature (TC) of about 372 K. The real-time observation, facilitated by Lorentz transmission electron microscopy, revealed the spontaneous formation of magnetic skyrmions and evolution of domains in focused ion beam-prepared Fe5Si3 thin foils. Moreover, Fe5Si3 device transport measurements expose notable magnetoresistance (MR) effects, enabling the interchange between positive and negative MR across specific temperature settings. These results offer various potential avenues for exploring diverse topological spin textures and their formation mechanisms, indicating inventive applications for iron-silicon alloy in the realm of spintronics.

12.
Front Immunol ; 15: 1400744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799446

RESUMO

Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico , Prognóstico , Biomarcadores Tumorais/genética , RNA não Traduzido/genética , RNA Longo não Codificante/genética , Animais , MicroRNAs/genética
13.
Oxid Med Cell Longev ; 2023: 4256116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778205

RESUMO

Gliomas are highly invasive and aggressive tumors having the highest incidence rate of brain cancer. Identifying effective prognostic and potential therapeutic targets is necessitated. The relationship of pyroptosis, a form of programmed cellular death, with gliomas remains elusive. We constructed and validated a prognostic model for gliomas using pyroptosis-related genes. Differentially expressed pyroptosis-related genes were screened using the "limma" package. Based on LASSO-Cox regression, nine significant genes including CASP1, CASP3, CASP6, IL32, MKI67, MYD88, PRTN3, NOS1, and VIM were employed to construct a prognostic model in the TCGA cohort; the results were validated in the CGGA cohort. According to the median risk score, the patients were classified into two risk groups, namely, high- and low-risk groups. Patients at high risk had worse prognoses relative to those at low risk evidenced by the Kaplan-Meier curve analysis. The two groups exhibited differences in immune cell infiltration and TMB scores, with high immune checkpoint levels, TMB scores, and immune cell infiltration levels in the high-risk group. KEGG and GO analyses suggested enrichment in immune-related pathways. Furthermore, we found that the genes in our signature strongly correlated with oxidative stress-related pathways and the subgroups exhibited different ssGSEA scores. Some small molecules targeted the genes in the model, and we verified their drug sensitivities between the risk groups. The scRNA-seq dataset, GSE138794, was processed using the "Seurat" package to assess the level of risk gene expression in specific cell types. Finally, the MYD88 level was lowered in the U87 glioma cell line using si-RNA constructs. Cellular proliferation was impaired, and fewer pyroptosis-related cytokines were released upon exposure to LPS. In summary, we built a pyroptosis-related gene model that accurately classified glioma patients into high- and low-risk groups. The findings suggest that the signature may be an effective prognostic predictive tool for gliomas.


Assuntos
Glioma , Piroptose , Humanos , Piroptose/genética , Prognóstico , Fator 88 de Diferenciação Mieloide , Glioma/genética , Estresse Oxidativo/genética , Proteínas Adaptadoras de Transdução de Sinal
14.
Micromachines (Basel) ; 14(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838174

RESUMO

Electrokinetic flow can be generated as a highly coupled phenomenon among velocity fields, electric conductivity fields, and electric fields. It can exhibit different responses to AC electric fields in different frequency regimes, according to different instability/receptivity mechanisms. In this investigation, by both flow visualization and single-point laser-induced fluorescence (LIF) method, the response of AC electrokinetic flow and the transition routes towards chaos and turbulence have been experimentally investigated. It is found, when the AC frequency ff>30 Hz, the interface responds at both the neutral frequency of the basic flow and the AC frequency. However, when ff≥30 Hz, the interface responds only at the neutral frequency of the basic flow. Both periodic doubling and subcritical bifurcations have been observed in the transition of AC electrokinetic flow. We hope the current investigation can promote our current understanding of the ultrafast transition process of electrokinetic flow from laminar state to turbulence.

15.
Adv Mater ; 35(42): e2304118, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437137

RESUMO

2D magnetic materials have been of interest due to their unique long-range magnetic ordering in the low-dimensional regime and potential applications in spintronics. Currently, most studies are focused on strippable van der Waals magnetic materials with layered structures, which typically suffer from a poor stability and scarce species. Spinel oxides have a good environmental stability and rich magnetic properties. However, the isotropic bonding and close-packed nonlayered crystal structure make their 2D growth challenging, let alone the phase engineering. Herein, a phase-controllable synthesis of 2D single-crystalline spinel-type oxides is reported. Using the van der Waals epitaxy strategy, the thicknesses of the obtained tetragonal and hexagonal manganese oxide (Mn3 O4 ) nanosheets can be tuned down to 7.1 nm and one unit cell (0.7 nm), respectively. The magnetic properties of these two phases are evaluated using vibrating-sample magnetometry and first-principle calculations. Both structures exhibit a Curie temperature of 48 K. Owing to its ultrathin geometry, the Mn3 O4 nanosheet exhibits a superior ultraviolet detection performance with an ultralow noise power density of 0.126 pA Hz-1/2 . This study broadens the range of 2D magnetic semiconductors and highlights their potential applications in future information devices.

16.
Adv Mater ; 35(22): e2301668, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37015006

RESUMO

Element doping has become an effective strategy to engineer the magnetic properties of two-dimensional (2D) materials and is widely explored in van der Waals layered transition metal dichalcogenides. However, the high-concentration substitution doping of 2D nonlayered metal oxides, which can preserve the original crystal texture and guarantee the homogeneity of doping distribution, is still a critical challenge due to the isotropic bonding of closed-packed structures. In this work, the synthesis of high-quality 2D nonlayered nickel-doped cobalt monoxide nanosheets via in situ atmospheric pressure chemical vapor deposition method is reported. High-resolution transmission electron microscopy confirmed that nickel atoms are doped at the intrinsic cobalt atom sites. The nickel doping concentration is stable at ≈15%, superior to most magnetic dopants doping in 2D materials and metal oxides. Magnetic measurements showed that pristine cobalt monoxide is nonferromagnetic, whereas nickel-doped cobalt monoxide exhibits robust ferromagnetic behavior with a Curie temperature of ≈180 K. Density functional theory calculations reveal that nickel atoms can improve the internal ferromagnetic correlation, giving rise to significant ferromagnetic performance of cobalt monoxide nanosheets. These results provide a valuable case for tuning the competing correlated states and magnetic ordering by substitution doping in 2D nonlayered oxide semiconductors.

17.
J Oncol ; 2022: 7043431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36281290

RESUMO

Gliomas are the most common tumor in the central nervous system with limited prognostic markers making it difficult to research progression. Induction of cellular immunogenic death is a promising treatment for glioma. Pyroptosis is one of the recently discovered programmed immuogenic cell death modes which remains unclear in glioma. We obtained glioma datasets from the CGGA and TCGA websites. Pearson correlation analysis was used to find pyroptosis-related lncRNAs. Subsequently, the univariate, LASSO, and multivariate Cox regression were applied to construct a prognostic signature based on pyroptosis-related lncRNAs. Kaplan-Meier plots, ROC curves, and PCA were utilized for testing the prognostic performance of the signature. We conducted the univariate and multivariate Cox regressions to ascertain if the signature worked as an independent factor for predicting overall survival (OS) for individuals with glioma from other characteristics. For evaluating the immune landscape differences between the subgroups, ESTIMATE, CIBERTSORT, and ssGSEA were adopted. Additionally, biological functions and pathways of DEGs were identified by KEGG and GO. We also screened potential drugs and measured sensitivities of chemotherapeutics between the subgroups by CellMiner and pRRophetic package. Finally, shRNA was conducted to knockdown of COX10-AS1 in U87 cells to determine its relationship with pyroptosis. We successfully created an effective pyroptosis-related lncRNA signature that divided individuals into groups of low- and high-risk, and individuals in the high-risk group were with poor prognosis in comparison to the individuals in the other group. A nomogram including clinical factors and risk scores to predict the OS was built. Furthermore, the two groups appeared to have different immune landscapes; the high-risk group showed greater levels of ESTIMATE scores, immune cell infiltration, and immune checkpoints. Additionally, immune-related pathways and functions were shown to be enriched according to KEGG and GO findings. Knockdown of COX10-AS1 inhibited U87 cell growth, upregulated CASP1 and NLRP3, and released more IL1-ß and IL-18 than the negative control. In summary, our study developed an lncRNA signature related to pyroptosis for OS prediction of gliomas and demonstrated its relationship with immune infiltration and drug sensitivity.

18.
ACS Appl Mater Interfaces ; 14(12): 14764-14773, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306813

RESUMO

Three-dimensional graphene (3D-graphene) is used in surface-enhanced Raman spectroscopy (SERS) because of its plasmonic nanoresonator structure and good ability to interact with light. However, a thin (3-5 nm) layer of amorphous carbon (AC) inevitably appears as a template layer between the 3D-graphene and object substrate when the 3D-graphene layer is synthesized, weakening the enhancement factor. Herein, two-dimensional graphene (2D-graphene) is employed as a template layer to directly synthesize 3D-graphene on a germanium (Ge) substrate via plasma-assisted chemical vapor deposition, bypassing the formation of an AC layer. The interaction and photoinduced charge transfer ability of the 3D-graphene/Ge heterojunction with incident light are improved. Moreover, the high density of electronic states close to the Fermi level of the heterojunction induces the adsorbed probe molecules to efficiently couple to the 3D-graphene-based SERS substrate. Our experimental results imply that the lowest concentrations of rhodamine 6G and rhodamine B that can be detected on the 3D/2D-graphene/Ge SERS substrate correspond to 10-10 M; for methylene blue, it is 10-8 M. The detection limits of the 3D/2D-graphene/Ge SERS substrate with respect to 3-hydroxytyramine hydrochloride and melamine (in milk) are both less than 1 ppm. This work may provide a viable and convenient alternative method for preparing 3D-graphene SERS substrates. It also constitutes a new approach to developing SERS substrates with remarkable performance levels.

19.
J Vis Exp ; (170)2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33938893

RESUMO

Mimicking in vivo environmental conditions is crucial for in vitro studies on complex life machinery. However, current techniques targeting live cells and organs are either highly expensive, like robotics, or lack nanoliter volume and millisecond time accuracy in liquid manipulation. We herein present the design and fabrication of a microfluidic system, which consists of 1,500 culture units, an array of enhanced peristaltic pumps and an on-site mixing modulus. To demonstrate the capacities of the microfluidic device, neural stem cell (NSC) spheres are maintained in the proposed system. We observed that when the NSC sphere is exposed to CXCL in day 1 and EGF in day 2, the round-shaped conformation is well maintained. Variation in the input order of 6 drugs causes morphological changes to the NSC sphere and the expression level representative marker for NSC stemness (i.e., Hes5 and Dcx). These results indicate that dynamic and complex environmental conditions have great effects on NSC differentiation and self-renewal, and the proposed microfluidic device is a suitable platform for high throughput studies on the complex life machinery.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Metagenômica/métodos , Microfluídica/métodos , Humanos
20.
J Immunol Res ; 2021: 9921466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368371

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer whose incidence and mortality rate are increasing. Identifying immune-related lncRNAs and constructing a model would probably provide new insights into biomarkers and immunotherapy for ccRCC and aid in the prognosis prediction. METHODS: The transcription profile and clinical information were obtained from The Cancer Genome Atlas (TCGA). Immune-related gene sets and transcription factor genes were downloaded from GSEA website and Cistrome database, respectively. Tumor samples were divided into the training set and the testing set. Immune-related differentially expressed lncRNAs (IDElncRNAs) were identified from the whole set. Univariate Cox regression, LASSO, and stepwise multivariate Cox regression were performed to screen out ideal prognostic IDElncRNAs (PIDElncRNAs) from the training set and develop a multi-lncRNA signature. RESULTS: Consequently, AC012236.1, AC078778.1, AC078950.1, AC087318.1, and AC092535.4 were screened to be significantly related to the prognosis of ccRCC patients, which were used to establish the five-lncRNA signature. Its wide diagnostic capacity was revealed in different subgroups of clinical parameters. Then AJCC-stage, Fuhrman-grade, pharmaceutical, age, and risk score regarded as independent prognostic factors were integrated to construct a nomogram, whose good performance in predicting 3-, 5-, and 7-year overall survival of ccRCC patients was revealed by time-dependent ROC curves and verified by the testing sets and ICGC dataset. The calibration plots showed great agreement of the nomogram between predicted and observed outcomes. Functional enrichment analysis showed the signature and each lncRNA were mainly enriched in pathways associated with regulation of immune response. Several kinds of tumor-infiltrating immune cells like regulatory T cells, T follicular helper cells, CD8+ T cells, resting mast cells, and naïve B cells were significantly correlated with the signature. CONCLUSION: Therefore, we constructed a five-lncRNA model integrating clinical parameters to help predict the prognosis of ccRCC patients. The five immune-related lncRNAs could potentially be therapeutic targets for immunotherapy in ccRCC in the future.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais/etiologia , Carcinoma de Células Renais/mortalidade , Imunidade/genética , Neoplasias Renais/etiologia , Neoplasias Renais/mortalidade , RNA Longo não Codificante/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Anotação de Sequência Molecular , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA