Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(3): 1243-1257, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38180820

RESUMO

I-motifs (iMs) are four-stranded non-B DNA structures containing C-rich DNA sequences. The formation of iMs is sensitive to pH conditions and DNA methylation, although the extent of which is still unknown in both humans and plants. To investigate this, we here conducted iMab antibody-based immunoprecipitation and sequencing (iM-IP-seq) along with bisulfite sequencing using CK (original genomic DNA without methylation-related treatments) and hypermethylated or demethylated DNA at both pH 5.5 and 7.0 in rice, establishing a link between pH, DNA methylation and iM formation on a genome-wide scale. We found that iMs folded at pH 7.0 displayed higher methylation levels than those formed at pH 5.5. DNA demethylation and hypermethylation differently influenced iM formation at pH 7.0 and 5.5. Importantly, CG hypo-DMRs (differentially methylated regions) and CHH (H = A, C and T) hyper-DMRs alone or coordinated with CG/CHG hyper-DMRs may play determinant roles in the regulation of pH dependent iM formation. Thus, our study shows that the nature of DNA sequences alone or combined with their methylation status plays critical roles in determining pH-dependent formation of iMs. It therefore deepens the understanding of the pH and methylation dependent modulation of iM formation, which has important biological implications and practical applications.


Assuntos
Metilação de DNA , Oryza , Humanos , DNA/genética , Genoma , Concentração de Íons de Hidrogênio , Oryza/genética
2.
Plant Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917225

RESUMO

Single-stranded DNA (ssDNA) is essential for various DNA-templated processes in both eukaryotes and prokaryotes. However, comprehensive characterizations of ssDNA still lag in plants compared to non-plant systems. Here, we conducted in situ S1-seq (ISS1-seq), with starting gDNA ranging from 5 µg to 250 ng, followed by comprehensive characterizations of ssDNA in rice (Oryza sativa L.). We found that ssDNA loci were substantially associated with a subset of non-B DNA structures and functional genomic loci. Subtypes of ssDNA loci had distinct epigenetic features. Importantly, ssDNA may act alone or partly coordinate with non-B DNA structures, functional genomic loci, or epigenetic marks to actively or repressively modulate gene transcription, which is genomic-region-dependent and associated with the distinct accumulation of RNA Pol II. Moreover, distinct types of ssDNA had differential impacts on the activities and evolution of TEs (especially common or conserved TEs) in the rice genome. Our study showcases an antibody-independent technique for characterizing non-B DNA structures or functional genomic loci in plants. It lays the groundwork and fills a crucial gap for further exploration of ssDNA, non-B DNA structures, or functional genomic loci, thereby advancing our understanding of their biology in plants.

3.
Plant Physiol ; 193(3): 1880-1896, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37539937

RESUMO

Cis-regulatory elements (CREs) fine-tune gene transcription in eukaryotes. CREs with sequence variations play vital roles in driving plant or crop domestication. However, how global sequence and structural variations (SVs) are responsible for multilevel changes between indica and japonica rice (Oryza sativa) is still not fully elucidated. To address this, we conducted multiomic studies using MNase hypersensitivity sequencing (MH-seq) in combination with RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and bisulfite sequencing (BS-seq) between the japonica rice variety Nipponbare (NIP) and indica rice variety 93-11. We found that differential MNase hypersensitive sites (MHSs) exhibited some distinct intrinsic genomic sequence features between NIP and 93-11. Notably, through MHS-genome-wide association studies (GWAS) integration, we found that key sequence variations may be associated with differences of agronomic traits between NIP and 93-11, which is partly achieved by MHSs harboring CREs. In addition, SV-derived differential MHSs caused by transposable element (TE) insertion, especially by noncommon TEs among rice varieties, were associated with genes with distinct functions, indicating that TE-driven gene neo- or subfunctionalization is mediated by changes of chromatin openness. This study thus provides insights into how sequence and genomic SVs control agronomic traits of NIP and 93-11; it also provides genome-editing targets for molecular breeding aiming at improving favorable agronomic properties.


Assuntos
Oryza , Oryza/genética , Cromatina/genética , Estudo de Associação Genômica Ampla , Epigênese Genética , Elementos de DNA Transponíveis/genética , Genômica , Genoma de Planta/genética
4.
Nucleic Acids Res ; 50(6): 3226-3238, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35188565

RESUMO

I-motifs (iMs) are non-canonical DNA secondary structures that fold from cytosine (C)-rich genomic DNA regions termed putative i-motif forming sequences (PiMFSs). The structure of iMs is stabilized by hemiprotonated C-C base pairs, and their functions are now suspected in key cellular processes in human cells such as genome stability and regulation of gene transcription. In plants, their biological relevance is still largely unknown. Here, we characterized PiMFSs with high potential for i-motif formation in the rice genome by developing and applying a protocol hinging on an iMab antibody-based immunoprecipitation (IP) coupled with high-throughput sequencing (seq), consequently termed iM-IP-seq. We found that PiMFSs had intrinsic subgenomic distributions, cis-regulatory functions and an intricate relationship with DNA methylation. We indeed found that the coordination of PiMFSs with DNA methylation may affect dynamics of transposable elements (TEs) among different cultivated Oryza subpopulations or during evolution of wild rice species. Collectively, our study provides first and unique insights into the biology of iMs in plants, with potential applications in plant biotechnology for improving important agronomic rice traits.


Assuntos
Elementos de DNA Transponíveis , Oryza , Citosina , Metilação de DNA , Elementos de DNA Transponíveis/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oryza/genética
5.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203805

RESUMO

A G-quadruplex (G4) is a typical non-B DNA structure and involved in various DNA-templated events in eukaryotic genomes. PEG and PDS chemicals have been widely applied for promoting the folding of in vivo or in vitro G4s. However, how PEG and PDS preferentially affect a subset of G4 formation genome-wide is still largely unknown. We here conducted a BG4-based IP-seq in vitro under K++PEG or K++PDS conditions in the rice genome. We found that PEG-favored IP-G4s+ have distinct sequence features, distinct genomic distributions and distinct associations with TEGs, non-TEGs and subtypes of TEs compared to PDS-favored ones. Strikingly, PEG-specific IP-G4s+ are associated with euchromatin with less enrichment levels of DNA methylation but with more enriched active histone marks, while PDS-specific IP-G4s+ are associated with heterochromatin with higher enrichment levels of DNA methylation and repressive marks. Moreover, we found that genes with PEG-specific IP-G4s+ are more expressed than those with PDS-specific IP-G4s+, suggesting that PEG/PDS-specific IP-G4s+ alone or coordinating with epigenetic marks are involved in the regulation of the differential expression of related genes, therefore functioning in distinct biological processes. Thus, our study provides new insights into differential impacts of PEG and PDS on G4 formation, thereby advancing our understanding of G4 biology.


Assuntos
Quadruplex G , Oryza , Epigenômica , Oryza/genética , Genômica , DNA
6.
Plant Physiol ; 188(3): 1632-1648, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34893906

RESUMO

A DNA G-quadruplex (G4) is a non-canonical four-stranded nucleic acid structure involved in many biological processes in mammals. The current knowledge on plant DNA G4s, however, is limited; whether and how DNA G4s impact gene expression in plants is still largely unknown. Here, we applied a protocol referred to as BG4-DNA-IP-seq followed by a comprehensive characterization of DNA G4s in rice (Oryza sativa L.); we next integrated dG4s (experimentally detectable G4s) with existing omics data and found that dG4s exhibited differential DNA methylation between transposable element (TE) and non-TE genes. dG4 regions displayed genic-dependent enrichment of epigenomic signatures; finally, we showed that these sites displayed a positive association with expression of DNA G4-containing genes when located at promoters, and a negative association when located in the gene body, suggesting localization-dependent promotional/repressive roles of DNA G4s in regulating gene transcription. This study reveals interrelations between DNA G4s and epigenomic signatures, as well as implicates DNA G4s in modulating gene transcription in rice. Our study provides valuable resources for the functional characterization or bioengineering of some of key DNA G4s in rice.


Assuntos
Produtos Agrícolas/genética , DNA , Quadruplex G , Oryza/genética , Plantas Geneticamente Modificadas/genética , Transcrição Gênica , Epigenômica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
7.
Genome Res ; 29(8): 1287-1297, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31262943

RESUMO

We conducted genome-wide identification of R-loops followed by integrative analyses of R-loops with relation to gene expression and epigenetic signatures in the rice genome. We found that the correlation between gene expression levels and profiled R-loop peak levels was dependent on the positions of R-loops within gene structures (hereafter named "genic position"). Both antisense only (ASO)-R-loops and sense/antisense (S/AS)-R-loops sharply peaked around transcription start sites (TSSs), and these peak levels corresponded positively with transcript levels of overlapping genes. In contrast, sense only (SO)-R-loops were generally spread over the coding regions, and their peak levels corresponded inversely to transcript levels of overlapping genes. In addition, integrative analyses of R-loop data with existing RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), DNase I hypersensitive sites sequencing (DNase-seq), and whole-genome bisulfite sequencing (WGBS or BS-seq) data revealed interrelationships and intricate connections among R-loops, gene expression, and epigenetic signatures. Experimental validation provided evidence that the demethylation of both DNA and histone marks can influence R-loop peak levels on a genome-wide scale. This is the first study in plants that reveals novel functional aspects of R-loops, their interrelations with epigenetic methylation, and roles in transcriptional regulation.


Assuntos
Epigênese Genética , Genoma de Planta , Oryza/genética , Proteínas de Plantas/genética , Estruturas R-Loop , Transcrição Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Histonas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , Sítio de Iniciação de Transcrição , Sequenciamento Completo do Genoma
8.
Endoscopy ; 54(6): 585-590, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34905794

RESUMO

BACKGROUND: Endoscopic transcecal appendectomy (ETA) has been reported as a minimally invasive alternative procedure for lesions involving the appendiceal orifice. The aim of this case series study was to evaluate the feasibility, safety, and effectiveness of ETA for lesions at the appendiceal orifice. METHODS: This retrospective study included consecutive patients with appendiceal orifice lesions who underwent ETA between December 2018 and March 2021. The primary outcome was technical success. The secondary outcomes included postoperative adverse events, postoperative hospital stay, and recurrence. RESULTS: 13 patients with appendiceal orifice lesions underwent ETA during the study period. The median lesion size was 20 mm (range 8-50). Lesions morphologies were polypoid lesions (n = 5), laterally spreading tumors (n = 4), and submucosal lesions (n = 4). Technical success with complete resection was achieved in all 13 cases. There were no postoperative bleeding, perforation, or intra-abdominal abscess. The median length of hospital stay after ETA was 8 days (range 6-18). There was no tumor recurrence during a median follow-up of 17 months (range 1-28). CONCLUSIONS: ETA is feasible, safe, and effective for complete resection of appendiceal orifice lesions. Larger, multicenter, prospective studies are needed to further assess this technique.


Assuntos
Apêndice , Ressecção Endoscópica de Mucosa , Apendicectomia/métodos , Apêndice/patologia , Apêndice/cirurgia , Ressecção Endoscópica de Mucosa/efeitos adversos , Ressecção Endoscópica de Mucosa/métodos , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
9.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955535

RESUMO

DNA G-quadruplexes (G4s) are non-canonical four-stranded DNA structures involved in various biological processes in eukaryotes. Molecularly crowded solutions and monovalent cations have been reported to stabilize in vitro and in vivo G4 formation. However, how K+ and Na+ affect G4 formation genome-wide is still unclear in plants. Here, we conducted BG4-DNA-IP-seq, DNA immunoprecipitation with anti-BG4 antibody coupled with sequencing, under K+ and Na+ + PEG conditions in vitro. We found that K+-specific IP-G4s had a longer peak size, more GC and PQS content, and distinct AT and GC skews compared to Na+-specific IP-G4s. Moreover, K+- and Na+-specific IP-G4s exhibited differential subgenomic enrichment and distinct putative functional motifs for the binding of certain trans-factors. More importantly, we found that K+-specific IP-G4s were more associated with active marks, such as active histone marks, and low DNA methylation levels, as compared to Na+-specific IP-G4s; thus, K+-specific IP-G4s in combination with active chromatin features facilitate the expression of overlapping genes. In addition, K+- and Na+-specific IP-G4 overlapping genes exhibited differential GO (gene ontology) terms, suggesting they may have distinct biological relevance in rice. Thus, our study, for the first time, explores the effects of K+ and Na+ on global G4 formation in vitro, thereby providing valuable resources for functional G4 studies in rice. It will provide certain G4 loci for the biotechnological engineering of rice in the future.


Assuntos
Quadruplex G , Oryza , DNA/química , Epigenômica , Código das Histonas , Oryza/genética
10.
Physiol Mol Biol Plants ; 27(6): 1163-1171, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34177142

RESUMO

R-loops and covalent modifications of N 6 -methyladenine on DNA (D-6 mA) or RNA (R-m6A) have been documented to function in various cellular processes in eukaryotes. However, the relationships between R-loops and both covalent modifications are still elusive in plants. Here, we integrated existing ssDRIP-seq with D-6 mA and R-m6A data from Arabidopsis thaliana. We found that the presence of either of both modifications facilitates R-loop formation and transcription of overlapping genes. Interestingly, our study suggests that the presence of R-m6A is key to affect R-loop intensity and positively regulate gene transcription. Moreover, the presence of D-6 mA plays an additive role to facilitate the effect of R-m6A on R-loop intensity, however, D-6 mA may negatively regulate gene transcription when coexisted with R-m6A. Our analyses indicate that D-6 mA, R-m6A, or histone marks may act individually and cooperatively with R-loops in regulating gene transcription. Our study is the first to link R-loops with D-6 mA and R-m6A in plants, thereby providing new insights into interactions between R-loops with D-6 mA, R-m6A, and histone marks for regulating gene transcription. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01010-5.

14.
iScience ; 26(6): 106846, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250775

RESUMO

The search for G-quadruplex (G4)-forming sequences across the genome is motivated by their involvement in key cellular processes and their putative roles in dysregulations underlying human genetic diseases. Sequencing-based methods have been developed to assess the prevalence of DNA G4s genome wide, including G4-seq to detect G4s in purified DNA (in vitro) using the G4 stabilizer PDS, and G4 chromatin immunoprecipitation sequencing (G4 ChIP-seq) to detect G4s in in situ fixed chromatin (in vivo) using the G4-specific antibody BG4. We recently reported on G4-RNA precipitation and sequencing (G4RP-seq) to assess the in vivo prevalence of RNA G4 landscapes transcriptome wide using the small molecule BioTASQ. Here, we apply this technique for mapping DNA G4s in plants (rice) and compare the efficiency of this new technique, G4-DNA precipitation and sequencing, G4DP-seq, to that of BG4-DNA-IP-seq that we developed for mapping of DNA G4s in rice using BG4. By doing so, we compare the G4 capture ability of small-sized ligands (BioTASQ and BioCyTASQ) versus the antibody BG4.

15.
Medicine (Baltimore) ; 102(48): e36313, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050265

RESUMO

BACKGROUND: This study aimed to investigate the efficacy and safety of baricitinib in patients with severe coronavirus disease 2019 (COVID-19). METHODS: Databases were searched for studies that compared the clinical efficacy and adverse effects of baricitinib with standard therapy for the treatment of severe COVID-19 and clearly reported relevant outcomes published until December 31, 2022. The corresponding data were extracted from these studies. A fixed-effects model was used to calculate the pooled estimates. The study protocol can be accessed at PROSPERO (CRD42023394173). RESULTS: The baricitinib group had a significantly lower mortality rate and proportion of patients who received mechanical ventilation than the control group (OR = 0.61, 0.57; P = .008, 0.02; 95% CI 0.42-0.88; 0.35-0.92; I2 = 71% and 86%, respectively). The length of hospital stay and rates of severe adverse events were not significantly different between the 2 groups. CONCLUSION: Baricitinib reduces mortality and mechanical ventilation requirements in patients with severe COVID-19. Therefore, we developed a comprehensive understanding of the role of baricitinib in patients with severe COVID-19.


Assuntos
Azetidinas , COVID-19 , Humanos , Tratamento Farmacológico da COVID-19 , Azetidinas/uso terapêutico , Grupos Controle
16.
Mol Plant ; 16(2): 432-451, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36587241

RESUMO

Dasypyrum villosum is one of the most valuable gene resources in wheat improvement, especially for disease resistance. The mining of favorable genes from D. villosum is frustrated by the lack of a whole genome sequence. In this study, we generated a doubled-haploid line, 91C43DH, using microspore culture and obtained a 4.05-GB high-quality, chromosome-scale genome assembly for D. villosum. The assembly contains39 727 high-confidence genes, and 85.31% of the sequences are repetitive. Two reciprocal translocation events were detected, and 7VS-4VL is a unique translocation in D. villosum. The prolamin seed storage protein-coding genes were found to be duplicated; in particular, the genes encoding low-molecular-weight glutenin at the Glu-V3 locus were significantly expanded. RNA sequencing (RNA-seq) analysis indicated that, after Blumeria graminearum f.sp tritici (Bgt) inoculation, there were more upregulated genes involved in the pattern-triggered immunity and effector-triggered immunity defense pathways in D. villosum than in Triticum urartu. MNase hypersensitive sequencing (MH-seq) identified two Bgt-inducible MH sites (MHSs), one in the promoter and one in the 3' terminal region of the powdery mildew resistance (Pm) gene NLR1-V. Each site had two subpeaks and they were termed MHS1 (MHS1.1/1.2) and MHS2 (MHS2.1/2.2). Bgt-inducible MHS2.2 was uniquely present in D. villosum, and MHS1.1 was more inducible in D. villosum than in wheat, suggesting that MHSs may be critical for regulation of NLR1-V expression and plant defense. In summary, this study provides a valuable genome resource for functional genomics studies and wheat-D. villosum introgression breeding. The identified regulatory mechanisms may also be exploited to develop new strategies for enhancing Pm resistance by optimizing gene expression in wheat.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Resistência à Doença/genética , Genes de Plantas , Melhoramento Vegetal , Poaceae/genética , Cromossomos de Plantas , Doenças das Plantas/genética
17.
Genes (Basel) ; 13(2)2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35205426

RESUMO

BACKGROUND: Maize mesophyll (M) cells play important roles in various biological processes such as photosynthesis II and secondary metabolism. Functional differentiation occurs during M-cell development, but the underlying mechanisms for regulating M-cell development are largely unknown. RESULTS: We conducted single-cell RNA sequencing (scRNA-seq) to profile transcripts in maize leaves. We then identified coregulated modules by analyzing the resulting pseudo-time-series data through gene regulatory network analyses. WRKY, ERF, NAC, MYB and Heat stress transcription factor (HSF) families were highly expressed in the early stage, whereas CONSTANS (CO)-like (COL) and ERF families were highly expressed in the late stage of M-cell development. Construction of regulatory networks revealed that these transcript factor (TF) families, especially HSF and COL, were the major players in the early and later stages of M-cell development, respectively. Integration of scRNA expression matrix with TF ChIP-seq and Hi-C further revealed regulatory interactions between these TFs and their targets. HSF1 and COL8 were primarily expressed in the leaf bases and tips, respectively, and their targets were validated with protoplast-based ChIP-qPCR, with the binding sites of HSF1 being experimentally confirmed. CONCLUSIONS: Our study provides evidence that several TF families, with the involvement of epigenetic regulation, play vital roles in the regulation of M-cell development in maize.


Assuntos
Fatores de Transcrição , Zea mays , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Humanos , Células do Mesofilo/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Zea mays/genética , Zea mays/metabolismo
18.
ACS Catal ; 12(4): 2694-2705, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36685107

RESUMO

Regioselectivities in catalytic C-H borylations (CHBs) have been rationalized using simplistic steric models and correlations with nuclear magnetic resonance (NMR) chemical shifts. However, regioselectivity can be significant for important substrate classes where none would be expected from these arguments. In this study, intramolecular hydrogen bonding (IMHB) can lead to steric shielding effects that can direct Ir-catalyzed CHB regiochemistry. Bpin (Bpin = pinacol boronic ester)/arene IMHB can promote remote borylations of N-borylated anilines, 2-amino-N-alkylpyridine, tetrahydroquinolines, indoles, and 1-borylated naphthalenes. Experimental and computational studies support molecular geometries with the Bpin orientation controlled by a C-H⋯O IMHB. IMHB-directed remote CHB appeared operative in the C6 borylation of 3-aminoindazole (seven-membered IMHB) and C6 borylation of an osimertinib analogue where a pyrimidine IMHB creates the steric shield. This study informs researchers to evaluate not only inter- but also intramolecular noncovalent interactions as potential drivers of remote CHB regioselectivity.

19.
Front Plant Sci ; 12: 761059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975944

RESUMO

Cotton is an excellent model for studying crop polyploidization and domestication. Chromatin profiling helps to reveal how histone modifications are involved in controlling differential gene expression between A and D subgenomes in allotetraploid cotton. However, the detailed profiling and functional characterization of broad H3K4me3 and H3K27me3 are still understudied in cotton. In this study, we conducted H3K4me3- and H3K27me3-related ChIP-seq followed by comprehensively characterizing their roles in regulating gene transcription in cotton. We found that H3K4me3 and H3K27me3 exhibited active and repressive roles in regulating the expression of genes between A and D subgenomes, respectively. More importantly, H3K4me3 exhibited enrichment level-, position-, and distance-related impacts on expression levels of related genes. Distinct GO term enrichment occurred between A/D-specific and homeologous genes with broad H3K4me3 enrichment in promoters and gene bodies, suggesting that broad H3K4me3-marked genes might have some unique biological functions between A and D subgenome. An anticorrelation between H3K27me3 enrichment and expression levels of homeologous genes was more pronounced in the A subgenome relative to the D subgenome, reflecting distinct enrichment of H3K27me3 in homeologous genes between A and D subgenome. In addition, H3K4me3 and H3K27me3 marks can indirectly influence gene expression through regulatory networks with TF mediation. Thus, our study provides detailed insights into functions of H3K4me3 and H3K27me3 in regulating differential gene expression and subfunctionalization of homeologous genes, therefore serving as a driving force for polyploidization and domestication in cotton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA