RESUMO
Oil extraction and development activities in the Athabasca Oil Sands Region of northern Alberta, Canada, release NOx, SOx, and NHy to the atmosphere, ultimately resulting in increasing N and S inputs to surrounding ecosystems through atmospheric deposition. Peatlands are a major feature of the northern Alberta landscape, with bogs covering 6-10% of the land area, and fens covering 21-53%. Bulk deposition of NH4+-N, NO3--N, dissolved inorganic N (DIN), and SO42--S, was quantified using ion-exchange resin collectors deployed at 23 locations, over 1-6 years. The results reveal maximum N and S deposition of 9.3 and 12.0 kg ha-1 yr-1, respectively, near the oil sands industrial center (the midpoint between the Syncrude and Suncor upgrader stacks), decreasing with distance to a background deposition of 0.9 and 1.1 kg ha-1 yr-1, respectively. To assess potential influences of high N and S deposition on bogs, we quantified N and S concentrations in tissues of two Sphagnum species, two lichen species, and four vascular plant species, as well as surface porewater concentrations of H+, NH4+-N, NO3--N, SO42--S and dissolved organic N in 19 ombrotrophic bogs, distributed across a 3255 km2 sampling area surrounding the oil sands industrial center. The two lichen species (Evernia mesomorpha and Cladonia mitis), two vascular plant species (Rhododendron groenlandicum and Picea mariana), and to a lesser extent one moss (Sphagnum fuscum), showed patterns of tissue N and S concentrations that were (1) highest near the oil sands industrial center and (2) positively correlated with bulk deposition of N or S. Concentrations of porewater H+ and SO42--S, but not of NH4+-N, NO3--N, DIN, or dissolved inorganic N, also were higher near the oil sands industrial center than at more distant locations. The oil sands region of northern Alberta is remote, with few roads, posing challenges to the monitoring of oil sands-related N and S deposition. Quantification of N and S concentrations in bog plant/lichen tissues and porewaters may serve as a monitoring tool to assess both the local intensity and the spatial extent of bulk N and S deposition, and as harbingers of potential shifts in ecosystem structure and function.
Assuntos
Líquens , Áreas Alagadas , Alberta , Atmosfera/química , Monitoramento Ambiental , Campos de Petróleo e GásRESUMO
Trace gas, particulate matter and deposition data collected in the Athabasca Oil Sands Region (AOSR) from 2000 to 2017 were evaluated as part of a broad scientific programmatic review. Results showed significant spatial patterns and temporal trends across the region. Concentrations of reactive gases were highest near the center of surface oil sands production operations and decreased towards the edges of the monitoring domain by factors of 8, 20, 4 and 3 for SO2, NO2, HNO3 and NH3, respectively. 18 of 30 sites showed statistically significant (p < 0.05) negative trends in SO2 concentrations suggesting an ~40% decrease since 2000. In contrast, only 2 of 30 sites showed statistically significant temporal trends (1 positive, 1 negative) for NO2. NH3 data showed (i) intermittent wildfire impacts, and (ii) high seasonality, with low concentrations during winter and significantly higher values during the summer. PM10 measurements were more limited, but also showed significant spatio-temporal variability. Comparison of PM10 and PM2.5 data showed that >80% of SO42- was in the PM2.5 fraction, while > 60% of Ca2+, Mg2+, Na+ and Cl- were in the PM10-2.5 fraction. Ion balances of both PM10 and PM2.5 contained cation excesses at near-field oil sand sites, but PM2.5 samples at forest health sites >20 km from surface production locations contained anion excesses. Monthly average concentrations of PM10 ions showed peak Ca2+ during March-April to November, but peak SO42-, NH4+ and NO3- from November-March. Deposition estimates showed rapid declines as a function of distance to oil sand operations. Estimated total N and total S deposition to forest health monitoring sites ranged from 2.0 to 5.7 kg ha-1 a-1 and 2.1-14.0 kg ha-1 a-1, respectively. Potential acid input (PAI) ranged from -0.46 to 0.79 keq ha-1 a-1 and was mostly 0.1-0.2 keq ha-1 a-1 throughout the domain, except for two clusters of sites near oil sand operations.
RESUMO
Ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), nitric acid (HNO3), and ozone (O3) were measured in summers of 2012 and 2013 with passive samplers. Nine monitoring sites were on W-E transect (511 to 3490â¯m) across central Sierra Nevada Mountains (SNM), and five sites on elevational gradient (1237 to 4346â¯m) in White Mountains (WM) of California. Levels of pollutants were similar in 2012 and 2013 in all sites. NH3, NO2, and HNO3 were highest near highly polluted Central Valley of California (CVC): maximum summer season means 7.8⯵gâ¯m-3, 3.0â¯ppb, and 3.0⯵gâ¯m-3, respectively. Regional background for NH3, NO2, and HNO3 in SNM occurred >20â¯km from CVC and >1500â¯m with seasonal averages: 2.1-4.8⯵gâ¯m-3; 0.8-1.7â¯ppb; 1.0-1.8⯵gâ¯m-3, respectively, during two seasons. Levels of NH3, NO2, and HNO3 in WM remote locations were similar: 1.2-3.3⯵gâ¯m-3, 0.6-1.1â¯ppb, and 1.0-1.3⯵gâ¯m-3, respectively. Seasonal mean O3 (38-60â¯ppb) in SNM did not change with distance from CVC nor elevation. In WM, O3 and NO mixing ratios were 41-61â¯ppb and 2.3-4.1â¯ppb, respectively, increasing with elevation. Even the lowest NH3 concentrations determined in this study were higher than NH3 continental background. This fact, as well as high values of Nreduced/Noxidized near CVC of 1.9 in 2012 and 2.0 in 2013, decreasing with distance to 0.7 in 2012 and 0.8 in 2013, show importance of NH3 emissions from CVC as a contributor to N deposition and ecological impacts in SNM. The phytotoxic O3 indices, AOT40 and W126, for selected sites on SNM and WM transects, showed high potential for negative O3 impacts on vegetation, including forest trees. CAPSULE: Elevated NH3, NO2, and HNO3 on the western slopes of the Sierra Nevada Mountains (SNM) near the Central Valley of California (CVC) decreased with distance from CVC and elevation to regional background levels also recorded at high elevation sites of the White Mountains (WM).
RESUMO
Estimating nitrogen (N) deposition to terrestrial ecosystems is complicated by the multiple forms and routes of N loading from the atmosphere. We used the integrated total nitrogen input (ITNI) method, which is based on the principle of isotope dilution within a plant-liquid-sand system, to quantify N inputs to coastal sage scrub ecosystems in Riverside, California. Using the ITNI method, we measured atmospheric N deposition of 29.3â¯kgâ¯Nâ¯ha-1â¯yr-1 over a range of aboveground plant biomass of 228 to 424â¯gâ¯m-2. From 85 to 96% of the atmospheric N inputs were taken up by plants in the ITNI modules with most of the assimilation mediated by, and stored in, aboveground biomass. Parallel measurements using conventional approaches yielded deposition rates of 25.2â¯kgâ¯Nâ¯ha-1â¯yr-1 when using the inferential method and 4.8â¯kgâ¯Nâ¯ha-1â¯yr-1 using throughfall collectors. The relatively low throughfall estimates were attributed to canopy retention of inorganic N, low rainfall, and to the fact that the throughfall flux data did not include organic N and stomatal uptake of N gases. Also, during dry periods, frequent watering of ITNI modules may have increased stomatal conductance and led to overestimates of N deposition. Across published studies that used the ITNI method, areal N deposition rates varied by ~40-fold, were positively correlated with plant biomass and 90% of the variability in measured deposition rates can be explained by plant biomass production. The ITNI method offers a holistic approach to measuring atmospheric N deposition in arid ecosystems, although more study is needed to understand how watering rates effect N deposition measurements.
RESUMO
Total nitrogen (N) deposition has declined in many parts of the U.S. and Europe since the 1990s. Even so, it appears that decreased N deposition alone may be insufficient to induce recovery from the impacts of decades of elevated deposition, suggesting that management interventions may be necessary to promote recovery. Here we review the effectiveness of four remediation approaches (prescribed burning, thinning, liming, carbon addition) on three indicators of recovery from N deposition (decreased soil N availability, increased soil alkalinity, increased plant diversity), focusing on literature from the U.S. We reviewed papers indexed in the Web of Science since 1996 using specific key words, extracted data on the responses to treatment along with ancillary data, and conducted a meta-analysis using a three-level variance model structure. We found 69 publications (and 2158 responses) that focused on one of these remediation treatments in the context of N deposition, but only 29 publications (and 408 responses) reported results appropriate for our meta-analysis. We found that carbon addition was the only treatment that decreased N availability (effect size: -1.80 to -1.84 across metrics), while liming, thinning, and prescribed burning all tended to increase N availability (effect sizes: +0.4 to +1.2). Only liming had a significant positive effect on soil alkalinity (+10.5%-82.2% across metrics). Only prescribed burning and thinning affected plant diversity, but with opposing and often statistically marginal effects across metrics (i.e., increased richness, decreased Shannon or Simpson diversity). Thus, it appears that no single treatment is effective in promoting recovery from N deposition, and combinations of treatments should be explored. These conclusions are based on the limited published data available, underscoring the need for more studies in forested areas and more consistent reporting suitable for meta-analyses across studies.
Assuntos
Carbono/análise , Recuperação e Remediação Ambiental/métodos , Florestas , Nitrogênio/análise , Solo/química , Ecossistema , Europa (Continente) , Plantas/classificação , Microbiologia do SoloRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0205296.].
RESUMO
To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study.
Assuntos
Besouros/fisiologia , Ecossistema , Poluentes Ambientais/toxicidade , Poluição Ambiental/efeitos adversos , Fertilizantes , Nitrogênio , Animais , Biodiversidade , Biomassa , California , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Fertilizantes/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Densidade Demográfica , Quercus , Solo/análiseRESUMO
We provide updated spatial distribution and inventory data for on-road NH3 emissions for the continental United States (U.S.) On-road NH3 emissions were determined from on-road CO2 emissions data and empirical NH3:CO2 vehicle emissions ratios. Emissions of NH3 from on-road sources in urbanized regions are typically 0.1-1.3tkm-2yr-1 while NH3 emissions in agricultural regions generally range from 0.4-5.5tkm-2yr-1, with a few hotspots as high as 5.5-11.2tkm-2yr-1. Counties with higher vehicle NH3 emissions than from agriculture include 40% of the U.S. POPULATION: The amount of wet inorganic N deposition as NH4+ from the National Atmospheric Deposition Program (NADP) network ranged from 37 to 83% with a mean of 58.7%. Only 4% of the NADP sites across the U.S. had <45% of the N deposition as NH4+ based on data from 2014 to 2016, illustrating the near-universal elevated proportions of NH4+ in deposition across the U.S. Case studies of on-road NH3 emissions in relation to N deposition include four urban sites in Oregon and Washington where the average NH4-N:NO3-N ratio in bulk deposition was 2.3. At urban sites in the greater Los Angeles Basin, bulk deposition of NH4-N and NO3-N were equivalent, while NH4-N:NO3-N in throughfall under shrubs ranged from 0.6 to 1.7. The NH4-N:NO3-N ratio at 7-10 sites in the Lake Tahoe Basin averaged 1.4 and 1.6 in bulk deposition and throughfall, and deposition of NH4-N was strongly correlated with summertime NH3 concentrations. On-road emissions of NH3 should not be ignored as an important source of atmospheric NH3, as a major contributor to particulate air pollution, and as a driver of N deposition in urban and urban-affected regions.
RESUMO
Atmospheric deposition of nitrogen (N) influences forest demographics and carbon (C) uptake through multiple mechanisms that vary among tree species. Prior studies have estimated the effects of atmospheric N deposition on temperate forests by leveraging forest inventory measurements across regional gradients in deposition. However, in the United States (U.S.), these previous studies were limited in the number of species and the spatial scale of analysis, and did not include sulfur (S) deposition as a potential covariate. Here, we present a comprehensive analysis of how tree growth and survival for 71 species vary with N and S deposition across the conterminous U.S. Our analysis of 1,423,455 trees from forest plots inventoried between 2000 and 2016 reveals that the growth and/or survival of the vast majority of species in the analysis (n = 66, or 93%) were significantly affected by atmospheric deposition. Species co-occurred across the conterminous U.S. that had decreasing and increasing relationships between growth (or survival) and N deposition, with just over half of species responding negatively in either growth or survival to increased N deposition somewhere in their range (42 out of 71). Averaged across species and conterminous U.S., however, we found that an increase in deposition above current rates of N deposition would coincide with a small net increase in tree growth (1.7% per Δ kg N ha-1 yr-1), and a small net decrease in tree survival (-0.22% per Δ kg N ha-1 yr-1), with substantial regional and among-species variation. Adding S as a predictor improved the overall model performance for 70% of the species in the analysis. Our findings have potential to help inform ecosystem management and air pollution policy across the conterminous U.S., and suggest that N and S deposition have likely altered forest demographics in the U.S.
Assuntos
Modelos Estatísticos , Nitrogênio/metabolismo , Enxofre/metabolismo , Árvores/metabolismo , Carbono/química , Carbono/metabolismo , Simulação por Computador , Florestas , Nitrogênio/química , Solo/química , Enxofre/química , Árvores/química , Árvores/crescimento & desenvolvimento , Estados UnidosRESUMO
We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved mechanistic knowledge of these effects can aid in developing robust predictions of how organisms respond to either increases or decreases in N deposition. Rising N levels affect forests in micro- and macroscopic ways from physiological responses at the cellular, tissue, and organism levels to influencing individual species and entire communities and ecosystems. A synthesis of these processes forms the basis for the overarching themes of this paper, which focuses on N effects at different levels of biological organization in temperate forests. For lichens, the mechanisms of direct effects of N are relatively well known at cellular, organismal, and community levels, though interactions of N with other stressors merit further research. For trees, effects of N deposition are better understood for N as an acidifying agent than as a nutrient; in both cases, the impacts can reflect direct effects on short time scales and indirect effects mediated through long-term soil and belowground changes. There are many gaps on fundamental N use and cycling in ecosystems, and we highlight the most critical gaps for understanding potential deleterious effects of N deposition. For lichens, these gaps include both how N affects specific metabolic pathways and how N is metabolized. For trees, these gaps include understanding the direct effects of N deposition onto forest canopies, the sensitivity of different tree species and mycorrhizal symbionts to N, the influence of soil properties, and the reversibility of N and acidification effects on plants and soils. Continued study of how these N response mechanisms interact with one another, and with other dimensions of global change, remains essential for predicting ongoing changes in lichen and tree populations across North American temperate forests.
RESUMO
Due to the potential ecological effects on terrestrial and aquatic ecosystems from atmospheric deposition in the Athabasca Oil Sands Region (AOSR), Alberta, Canada, this study was implemented to estimate atmospheric nitrogen (N) and sulfur (S) inputs. Passive samplers were used to measure ambient concentrations of ammonia (NH3), nitrogen dioxide (NO2), nitric acid/nitrous acid (HNO3/HONO), and sulfur dioxide (SO2) in the AOSR. Concentrations of NO2 and SO2 in winter were higher than those in summer, while seasonal differences of NH3 and HNO3/HONO showed an opposite trend, with higher values in summer. Concentrations of NH3, NO2 and SO2 were high close to the emission sources (oil sands operations and urban areas). NH3 concentrations were also elevated in the southern portion of the domain indicating possible agricultural and urban emission sources to the southwest. HNO3, an oxidation endpoint, showed wider ranges of concentrations and a larger spatial extent. Concentrations of NH3, NO2, HNO3/HONO and SO2 from passive measurements and their monthly deposition velocities calculated by a multi-layer inference model (MLM) were used to calculate dry deposition of N and S. NH3 contributed the largest fraction of deposited N across the network, ranging between 0.70-1.25kgNha(-1)yr(-1), HNO3/HONO deposition ranged between 0.30-0.90kgNha(-1)yr(-1), and NO2 deposition between 0.03-0.70kgNha(-1)yr(-1). During the modeled period, average dry deposition of the inorganic gaseous N species ranged between 1.03 and 2.85kgNha(-1)yr(-1) and SO4-S deposition ranged between 0.26 and 2.04kgha(-1)yr(-1). Comparisons with co-measured ion exchange resin throughfall data (8.51kgSha(-1)yr(-1)) indicate that modeled dry deposition combined with measured wet deposition (1.37kgSha(-1)yr(-1)) underestimated S deposition. Gas phase NH3 (71%) and HNO3 plus NO2 (79%) dry deposition fluxes dominated the total deposition of NH4-N and NO3-N, respectively.
Assuntos
Poluentes Atmosféricos/análise , Nitrogênio/análise , Campos de Petróleo e Gás , Enxofre/análise , Alberta , Monitoramento AmbientalRESUMO
The 2011 Richardson wildland mega-fire in the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada had large effects on air quality. At a receptor site in the center of the AOSR ambient PM2.5, O3, NO, NO2, SO2, NH3, HONO, HNO3, NH4+ and NO3- were measured during the April-August 2011 period. Concentrations of NH3, HNO3, NO2, SO2 and O3 were also monitored across the AOSR with passive samplers, providing monthly summer and bi-monthly winter average values in 2010, 2011 and 2012. During the fire, hourly PM2.5 concentrations >450µgm-3 were measured at the AMS 1 receptor site. The 24-h National Ambient Air Quality Standard (NAAQS) of 35µgm-3 and the Canada Wide Standard (CWS) of 30µgm-3 were exceeded on 13days in May and 7days in June. During the fire emission periods, sharp increases in NH3, HONO, HNO3, NH4+, NO3- and total inorganic reactive N concentrations occurred, all closely correlated with the PM2.5 changes. There were large differences in the relative contribution of various N compounds to total inorganic N between the no-fire emission and fire emission periods. While in the absence of fires NO and NO2 dominated, their relative contribution during the fires was ~2 fold smaller, mainly due to increased NH3, NH4+ and NO3-. Concentrations of HONO and HNO3 also greatly increased during the fires, but their contribution to the total inorganic N pool was relatively small. Elevated NH3 and HNO3 concentrations affected large areas of northern Alberta during the Richardson Fire. While NH3 and HNO3 concentrations were not at levels considered toxic to plants, these gases contributed significantly to atmospheric N deposition. Generally, no significant changes in O3 and SO2 concentrations were detected and their ambient concentrations were below levels harmful to human health or sensitive vegetation.
Assuntos
Poluição do Ar/análise , Material Particulado/análise , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Alberta , Amônia/análise , Monitoramento Ambiental , Nitratos/análise , Ácido Nítrico/análise , Ozônio/análise , Material Particulado/química , Dióxido de Enxofre/análise , TaigaRESUMO
Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work, bulk and throughfall deposition of inorganic nitrogen were monitored in three different holm oak forests in Spain during two years. The results obtained with IECs were contrasted with a conventional technique using bottle collectors and with a literature review of similar studies. The performance of IECs in comparison with the conventional method was good for measuring bulk deposition of nitrate and acceptable for ammonium and total dissolved inorganic nitrogen. Mean annual bulk deposition of inorganic nitrogen ranged 3.09-5.43 kg N ha(-1) according to IEC methodology, and 2.42-6.83 kg N ha(-1) y(-1) using the conventional method. Intra-annual variability of the net throughfall deposition of nitrogen measured with the conventional method revealed the existence of input pulses of nitrogen into the forest soil after dry periods, presumably originated from the washing of dry deposition accumulated in the canopy. Important methodological recommendations on the IEC method and discussed, compiled and summarized.
Assuntos
Compostos de Amônio/análise , Monitoramento Ambiental/métodos , Florestas , Nitratos/análise , Ciclo do Nitrogênio , Ecossistema , Resinas de Troca Iônica , Região do Mediterrâneo , Nitrogênio/análise , Quercus , Solo , EspanhaRESUMO
Conventional throughfall collection methods are labor intensive and analytically expensive to implement at broad scales. This study was conducted to test an alternative approach requiring infrequent sample collection and a greatly reduced number of chemical analyses. The major objective of the study was to determine the feasibility of using ion exchange resin (IER) to measure N deposition in throughfall with field deployment periods of 3 to 12 mo. Nitrogen deposition measurements in bulk throughfall collected under pine (Pinus sp.) canopies and in forest clearings were compared between co-located conventional throughfall solution collectors and IER throughfall collectors using mixed bed IER columns. Deposition data were collected for 1 yr at a high deposition site (Camp Paivika, CP) and a relatively low one (Barton Flats, BF) in the San Bernardino Mountains in southern California: Annual throughfall deposition values (kg ha(-1) of NH(4)-N + NO(3)-N) under large ponderosa pine trees (Pinus ponderosa Laws.) were 145.8 and 143.9 at CP and 17.0 and 15.0 at BF according to the IER and conventional methods, respectively. Analogous values for bulk deposition in forest clearings were 15.6 and 12.3 at CP and 4.0 and 3.3 at BF. It was concluded that the IER collectors can be used for routine monitoring of deposition in throughfall and bulk deposition, provided that field blanks are used to account for background levels of N in the IER columns, which at times are slightly elevated, possibly from slow release of amine groups from the anion exchange resin during field exposures.
Assuntos
Resinas de Troca Iônica , Nitrogênio/análise , Altitude , California , Monitoramento Ambiental/métodos , Pinus , Folhas de Planta/químicaRESUMO
Measurement of ionic deposition in throughfall is a widely used method for measuring deposition inputs to the forest floor. Many studies have been published, providing a large database of throughfall deposition inputs to forests. However, throughfall collection and analysis is labor intensive and expensive because of the large number of replicate collectors needed and because sample collection and chemical analyses are required on a stochastic precipitation event-based schedule. Therefore we developed and tested a throughfall collector system using a mixed bed ion exchange resin column. We anticipate that this method will typically require only one to three samplings per year. With this method, bulk deposition and bulk throughfall are collected by a funnel or snow tube and ions are retained as the solution percolates through the resin column. Ions retained by the resin are then extracted in the same column with 2 N KCl and analyzed for nitrate and ammonium. Deposition values in throughfall from conventional throughfall solution collectors and colocated ion exchange samplers were not significantly different during consecutive 3- and 4-month exposure periods at a high (Camp Paivika; >35 kg N ha(-1) year(-1)) and a low deposition (Barton Flats; 5-9 kg N ha(-1) year(-1)) site in the San Bernardino Mountains in southern California. N deposition in throughfall under mature pine trees at Camp Paivika after 7 months of exposure was extremely high (87 and 92 kg ha-1 based on the two collector types) compared to Barton Flats (11 and 13 kg ha(-1)). A large proportion of the N deposited in throughfall at Camp Paivika occurred as fog drip, demonstrating the importance of fog deposition as an input source of N at this site. By comparison, bulk deposition rates in open areas were 5.1 and 5.4 kg ha(-1) at Camp Paivika based on the two collector types, and 1.9 and 3.0 kg ha(-1) at Barton Flats.
Assuntos
Monitoramento Ambiental/métodos , Resinas de Troca Iônica/química , Amônia/análise , Ecossistema , Monitoramento Ambiental/economia , Monitoramento Ambiental/instrumentação , Resinas de Troca Iônica/economia , Nitratos/análise , Pinus ponderosa/química , Chuva , Reprodutibilidade dos Testes , Neve , Tempo , Água/análise , Água/químicaAssuntos
Poluentes Atmosféricos/análise , Atmosfera , Monitoramento Ambiental , Florestas , Nitrogênio/análise , ÁrvoresRESUMO
Industrial activities in the oil sands region of Alberta, Canada have resulted in greatly elevated emissions of SO2 and N (NO(x) and NH3) and there are concerns over possible widespread ecosystem acidification. Acid sensitive soils in the region are common and have very low base cation weathering rates: the median base cation weathering rate estimated for 63 sites using PROFILE was just 17 mmol cm(-2) yr(-1). Deposition of S and N in throughfall was approximately twice as high as deposition measured with open collectors and could be as high as 360 mmol cm(-2) yr(-1) within 20 km of the main industrial center, although deposition declined logarithmically with distance from the industrial activities. Base cation deposition however, mostly exceeded the combined inputs of S and N in bulk deposition and throughfall, particularly during the summer months. The potential for soil acidification at a site close (<3 km) to the largest mine was assessed using the dynamic ecosystem acidification model, MAGIC (Model of Acidification of Groundwater in Catchments). Despite very low base cation weathering rates (~6 mmol cm(-2) yr(-1)) and high (~250 mmol cm(-2) yr(-1)) acid (S+N) deposition at the site, soil base saturation and soil solution pH and molar Ca:Al ratio were predicted to increase in the future assuming acid and base cation deposition constant at current rates. This work shows that despite extremely low soil base cation weathering rates in the region, the risk of soil acidification is mitigated to a large extent by high base cation deposition, which in contrast to S emissions is derived from fugitive dust sources in the mines, and is poorly quantified for regional modeling studies.
RESUMO
Industrial nitrogen (N) emissions in the Athabasca oil sands region (AOSR), Alberta, Canada, affect nitrate (NO3) and ammonium (NH4) deposition rates in close vicinity of industrial emitters. NO3-N and NH4-N open field and throughfall deposition rates were determined at various sites between 3 km and 113 km distance to the main oil sand operations between May 2008 and May 2009. NO3 and NH4 were analyzed for δ(15)N-NO3, δ(18)O-NO3, Δ(17)O-NO3 and δ(15)N-NH4. Marked differences in the δ(18)O and Δ(17)O values between industrial emissions and background deposition allowed for the estimation of minimum industrial contributions to atmospheric NO3 deposition. δ(15)N-NH4 values also allowed for estimates of industrial contributions to atmospheric NH4 deposition. Results revealed that particularly sites within ~30 km radius from the main oil sands developments are significantly affected by industrial contributions to atmospheric NO3 and NH4 deposition.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Nitrogênio/análise , Campos de Petróleo e Gás , Poluentes do Solo/análise , AlbertaRESUMO
We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N flushes and plant demand promotes losses via leaching and gas emissions. Differences in P availability may control the response to N inputs and susceptibility to exotic plant invasion. Invasive grasses accumulate as fuel during the dry season, altering fire regimes. California and the Mediterranean Basin are the most threatened by N deposition; however, there is limited evidence for N deposition impacts outside of California. Consequently, more research is needed to determine critical loads for each region and vegetation type based on the most sensitive elements, such as changes in lichen species composition and N cycling.
Assuntos
Poluentes Atmosféricos/toxicidade , Ecossistema , Monitoramento Ambiental , Nitrogênio/toxicidade , Poluentes Atmosféricos/análise , Biodiversidade , Clima , Poluição Ambiental/estatística & dados numéricos , Região do Mediterrâneo , Nitrogênio/análise , Ciclo do Nitrogênio , Estações do AnoRESUMO
Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several regions of North America. Long-term monitoring of forest health indicators has facilitated the assessment of forest health and sustainability in North America. By linking a nationwide network of forest health plots with the more extensive forest inventory, forest health experts in the US have evaluated current trends for major forest health indicators and developed assessments of future risks. Canada and Mexico currently lack nationwide networks of forest health plots. Development and expansion of these networks is critical to effective assessment of future forest health impacts.