Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Pathol ; 262(2): 226-239, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37964706

RESUMO

Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/ß-catenin, mitogen-activated protein kinase, and TGF-ß receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Antígeno B7-H1 , Filogenia , Neoplasias Colorretais/patologia , Microambiente Tumoral/genética
2.
Breast Cancer Res Treat ; 170(3): 573-581, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29700676

RESUMO

BACKGROUND: Bio-banked formalin-fixed paraffin-embedded (FFPE) tissues provide an excellent opportunity for translational genomic research. Historically matched blood has not always been collected as a source of germline DNA. This project aimed to establish if normal FFPE breast tissue could be used as an alternative to blood. METHODS: Exome sequencing was carried out on matched tumour tissue, normal breast tissue and blood on five patients in the START trial. Retrieved samples had been archived at different centres for at least 13 years. Following tissue macro-dissection and DNA extraction, targeted exome capture was performed using SureSelect Human All Exome v5 reagents (Agilent). Illumina paired-end libraries were prepared from the captured target regions and sequenced on a HiSeq2500 (Illumina) acquiring 2 × 75 bp reads. Somatic variants were called using the MuTect software analysis tool and copy number abnormalities (CNA) were identified using CNVkit. Targeted sequencing and droplet digital PCR were used to validate somatic variants and CNA, respectively. RESULTS: Overlap of somatic variants and CNA called on tumour versus blood and tumour versus normal breast tissue was good. Agreement in somatic variant calling ranged from 76.9 to 93.6%. Variants with an allele frequency lower than 10% were more difficult to validate irrespective of the type of germline DNA used. Pearson's correlation coefficients for paired comparisons of CNA using blood or normal tissue as reference ranged from 0.70 to 0.94. CONCLUSIONS: There is good correlation between the somatic mutations and CNA called using archived blood or normal breast tissue as germline reference material.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA de Neoplasias , Predisposição Genética para Doença , Células Germinativas/metabolismo , Neoplasias da Mama/terapia , Terapia Combinada , Variações do Número de Cópias de DNA , Exoma , Feminino , Perfilação da Expressão Gênica , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reprodutibilidade dos Testes , Resultado do Tratamento
3.
Clin Chem ; 64(11): 1626-1635, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150316

RESUMO

BACKGROUND: Circulating free DNA sequencing (cfDNA-Seq) can portray cancer genome landscapes, but highly sensitive and specific technologies are necessary to accurately detect mutations with often low variant frequencies. METHODS: We developed a customizable hybrid-capture cfDNA-Seq technology using off-the-shelf molecular barcodes and a novel duplex DNA molecule identification tool for enhanced error correction. RESULTS: Modeling based on cfDNA yields from 58 patients showed that this technology, requiring 25 ng of cfDNA, could be applied to >95% of patients with metastatic colorectal cancer (mCRC). cfDNA-Seq of a 32-gene, 163.3-kbp target region detected 100% of single-nucleotide variants, with 0.15% variant frequency in spike-in experiments. Molecular barcode error correction reduced false-positive mutation calls by 97.5%. In 28 consecutively analyzed patients with mCRC, 80 out of 91 mutations previously detected by tumor tissue sequencing were called in the cfDNA. Call rates were similar for point mutations and indels. cfDNA-Seq identified typical mCRC driver mutations in patients in whom biopsy sequencing had failed or did not include key mCRC driver genes. Mutations only called in cfDNA but undetectable in matched biopsies included a subclonal resistance driver mutation to anti-EGFR antibodies in KRAS, parallel evolution of multiple PIK3CA mutations in 2 cases, and TP53 mutations originating from clonal hematopoiesis. Furthermore, cfDNA-Seq off-target read analysis allowed simultaneous genome-wide copy number profile reconstruction in 20 of 28 cases. Copy number profiles were validated by low-coverage whole-genome sequencing. CONCLUSIONS: This error-corrected, ultradeep cfDNA-Seq technology with a customizable target region and publicly available bioinformatics tools enables broad insights into cancer genomes and evolution. CLINICALTRIALSGOV IDENTIFIER: NCT02112357.


Assuntos
Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estudo de Associação Genômica Ampla , Humanos , Metástase Neoplásica , Sensibilidade e Especificidade
4.
Genome Res ; 24(11): 1854-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122612

RESUMO

Genome-wide association studies have identified more than 70 common variants that are associated with breast cancer risk. Most of these variants map to non-protein-coding regions and several map to gene deserts, regions of several hundred kilobases lacking protein-coding genes. We hypothesized that gene deserts harbor long-range regulatory elements that can physically interact with target genes to influence their expression. To test this, we developed Capture Hi-C (CHi-C), which, by incorporating a sequence capture step into a Hi-C protocol, allows high-resolution analysis of targeted regions of the genome. We used CHi-C to investigate long-range interactions at three breast cancer gene deserts mapping to 2q35, 8q24.21, and 9q31.2. We identified interaction peaks between putative regulatory elements ("bait fragments") within the captured regions and "targets" that included both protein-coding genes and long noncoding (lnc) RNAs over distances of 6.6 kb to 2.6 Mb. Target protein-coding genes were IGFBP5, KLF4, NSMCE2, and MYC; and target lncRNAs included DIRC3, PVT1, and CCDC26. For one gene desert, we were able to define two SNPs (rs12613955 and rs4442975) that were highly correlated with the published risk variant and that mapped within the bait end of an interaction peak. In vivo ChIP-qPCR data show that one of these, rs4442975, affects the binding of FOXA1 and implicate this SNP as a putative functional variant.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 9/genética , Genoma Humano/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
5.
J Pathol ; 236(2): 186-200, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25692405

RESUMO

Germline mutations in the tumour suppressor BRCA2 predispose to breast, ovarian and a number of other human cancers. Brca2-deficient mouse models are used for preclinical studies but the pattern of genomic alterations in these tumours has not yet been described in detail. We have performed whole-exome DNA sequencing analysis of mouse mammary tumours from Blg-Cre Brca2(f/f) Trp53(f/f) animals, a model of BRCA2-deficient human cancer. We also used the sequencing data to estimate DNA copy number alterations in these tumours and identified a recurrent copy number gain in Met, which has been found amplified in other mouse mammary cancer models. Through a comparative genomic analysis, we identified several mouse Blg-Cre Brca2(f/f) Trp53(f/f) mammary tumour somatic mutations in genes that are also mutated in human cancer, but few of these genes have been found frequently mutated in human breast cancer. A more detailed analysis of these somatic mutations revealed a set of genes that are mutated in human BRCA2 mutant breast and ovarian tumours and that are also mutated in mouse Brca2-null, Trp53-null mammary tumours. Finally, a DNA deletion surrounded by microhomology signature found in human BRCA1/2-deficient cancers was not common in the genome of these mouse tumours. Although a useful model, there are some differences in the genomic landscape of tumours arising in Blg-Cre Brca2(f/f) Trp53(f/f) mice compared to human BRCA-mutated breast cancers. Therefore, this needs to be taken into account in the use of this model.


Assuntos
Genes BRCA2/fisiologia , Neoplasias Mamárias Experimentais/genética , Proteína Supressora de Tumor p53/deficiência , Animais , Antígenos CD/genética , Neoplasias da Mama/genética , Proteínas Cromossômicas não Histona/genética , Variações do Número de Cópias de DNA/genética , DNA de Neoplasias/genética , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Mutação em Linhagem Germinativa/genética , Humanos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores Imunológicos/genética , Análise de Sequência de DNA , Família de Moléculas de Sinalização da Ativação Linfocitária
6.
Nucleic Acids Res ; 42(10): 6270-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24823795

RESUMO

In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.


Assuntos
Mutagênicos/toxicidade , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Células Cultivadas , Cisplatino/toxicidade , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Doxorrubicina/toxicidade , Genoma Humano , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Transcrição Gênica
7.
J Pathol ; 232(5): 553-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395524

RESUMO

Micropapillary carcinoma (MPC) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations (CNAs) distinct from that of grade- and oestrogen receptor (ER)-matched invasive carcinomas of no special type (IC-NSTs). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray-based comparative genomic hybridization (aCGH) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs. Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC-NSTs, and recurrent mutations affecting mitogen-activated protein kinase family genes and NBPF10. RNA-sequencing analysis identified 17 high-confidence fusion genes, eight of which were validated and two of which were in-frame. No recurrent fusions were identified in an independent series of MPCs and IC-NSTs. Forced expression of in-frame fusion genes (SLC2A1-FAF1 and BCAS4-AURKA) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out-of-frame rearrangements was found in one MPC and in 13% of HER2-positive breast cancers, identified through a re-analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild-type CDK12 in a CDK12-null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Carcinoma Papilar/genética , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Mutação , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Dosagem de Genes , Predisposição Genética para Doença , Humanos , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Análise de Sequência de RNA , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 109(8): 2730-5, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21482774

RESUMO

Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment.


Assuntos
Genes Neoplásicos/genética , Testes Genéticos/métodos , Genoma Humano/genética , Interferência de RNA/efeitos dos fármacos , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
9.
Blood ; 120(5): 1077-86, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22573403

RESUMO

We have used whole exome sequencing to compare a group of presentation t(4;14) with t(11;14) cases of myeloma to define the mutational landscape. Each case was characterized by a median of 24.5 exonic nonsynonymous single-nucleotide variations, and there was a consistently higher number of mutations in the t(4;14) group, but this number did not reach statistical significance. We show that the transition and transversion rates in the 2 subgroups are similar, suggesting that there was no specific mechanism leading to mutation differentiating the 2 groups. Only 3% of mutations were seen in both groups, and recurrently mutated genes include NRAS, KRAS, BRAF, and DIS3 as well as DNAH5, a member of the axonemal dynein family. The pattern of mutation in each group was distinct, with the t(4;14) group being characterized by deregulation of chromatin organization, actin filament, and microfilament movement. Recurrent RAS pathway mutations identified subclonal heterogeneity at a mutational level in both groups, with mutations being present as either dominant or minor subclones. The presence of subclonal diversity was confirmed at a single-cell level using other tumor-acquired mutations. These results are consistent with a distinct molecular pathogenesis underlying each subgroup and have important impacts on targeted treatment strategies. The Medical Research Council Myeloma IX trial is registered under ISRCTN68454111.


Assuntos
Cromossomos Humanos Par 11 , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 4 , Evolução Clonal/genética , Heterogeneidade Genética , Mieloma Múltiplo/genética , Translocação Genética/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 4/genética , Ensaios Clínicos como Assunto , Evolução Clonal/fisiologia , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos , Perda de Heterozigosidade/genética , Masculino , Análise em Microsséries , Modelos Biológicos , Mutação/fisiologia , Transdução de Sinais/genética , Estudos de Validação como Assunto
10.
J Pathol ; 229(3): 422-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165508

RESUMO

PARP inhibitors (PARPi) for the treatment of BRCA1 or BRCA2 deficient tumours are currently the focus of seminal clinical trials exploiting the concept of synthetic lethality. Although clinical resistance to PARPi has been described, the mechanism underlying this has not been elucidated. Here, we investigate tumour material from patients who had developed resistance to the PARPi olaparib, subsequent to showing an initial clinical response. Massively parallel DNA sequencing of treatment-naive and post-olaparib treatment biopsies identified tumour-specific BRCA2 secondary mutations in olaparib-resistant metastases. These secondary mutations restored full-length BRCA2 protein, and most likely cause olaparib resistance by re-establishing BRCA2 function in the tumour cells.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA2/genética , Resistencia a Medicamentos Antineoplásicos , Mutação , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/secundário , Neoplasias da Mama Masculina/tratamento farmacológico , Neoplasias da Mama Masculina/genética , Neoplasias da Mama Masculina/patologia , Terapia Combinada , Análise Mutacional de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Análise de Sequência de DNA
11.
J Pathol ; 231(3): 301-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24308032

RESUMO

The incidence of oesophagogastric junctional (OGJ) adenocarcinoma is rising rapidly in western countries, in contrast to the declining frequency of distal gastric carcinoma. Treatment options for adenocarcinomas involving the oesophagogastric junction are limited and the overall prognosis is extremely poor. To determine the genomic landscape of OGJ adenocarcinoma, exomes of eight tumours and matched germline DNA were subjected to massively parallel DNA sequencing. Microsatellite instability was observed in three tumours which coincided with an elevated number of somatic mutations. In total, 117 genes were identified that had predicted coding alterations in more than one tumour. Potentially actionable coding mutations were identified in 67 of these genes, including those in CR2, HGF , FGFR4, and ESRRB. Twenty-nine genes harbouring somatic coding mutations and copy number changes in the MSS OGJ dataset are also known to be altered with similar predicted functional consequence in other tumour types. Compared with the published mutational profile of gastric cancers, 49% (57/117) of recurrently mutated genes were unique to OGJ tumours. TP53, SYNE1, and ARID1A were amongst the most frequently mutated genes in a larger OGJ cohort. Our study provides an insight into the mutational landscape of OGJ adenocarcinomas and confirms that this is a highly mutated and heterogeneous disease. Furthermore, we have uncovered somatic mutations in therapeutically relevant genes which may represent candidate drug targets.


Assuntos
Adenocarcinoma/genética , DNA de Neoplasias/genética , Neoplasias Esofágicas/genética , Junção Esofagogástrica , Mutação , Neoplasias Gástricas/genética , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenocarcinoma/química , Adenocarcinoma/patologia , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/genética , Adulto , Idoso , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/análise , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/química , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/patologia , Exoma/genética , Feminino , Genoma Humano/genética , Humanos , Imuno-Histoquímica , Perda de Heterozigosidade/genética , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas MutL , Mutação/genética , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Neoplasias Gástricas/química , Neoplasias Gástricas/patologia
12.
Nucleic Acids Res ; 40(15): 7190-206, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22573176

RESUMO

The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.


Assuntos
Células Epidérmicas , Queratinócitos/metabolismo , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Diferenciação Celular , Células Cultivadas , Fissura Palatina/genética , Regulação da Expressão Gênica , Genoma Humano , Humanos , Queratinócitos/citologia , Anotação de Sequência Molecular , Elementos Reguladores de Transcrição , Fator de Transcrição AP-2/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
13.
Breast Cancer Res Treat ; 135(1): 79-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22535017

RESUMO

Cancer is caused by mutations in oncogenes and tumor suppressor genes, resulting in the deregulation of processes fundamental to the normal behavior of cells. The identification and characterization of oncogenes and tumor suppressors has led to new treatment strategies that have significantly improved cancer outcome. The advent of next generation sequencing has allowed the elucidation of the fine structure of cancer genomes, however, the identification of pathogenic changes is complicated by the inherent genomic instability of cancer cells. Therefore, functional approaches for the identification of novel genes involved in the initiation and development of tumors are critical. Here we report the first whole human genome in vivo RNA interference screen to identify functionally important tumor suppressor genes. Using our novel approach, we identify previously validated tumor suppressor genes including TP53 and MNT, as well as several novel candidate tumor suppressor genes including leukemia inhibitory factor receptor (LIFR). We show that LIFR is a key novel tumor suppressor, whose deregulation may drive the transformation of a significant proportion of human breast cancers. These results demonstrate the power of genome wide in vivo RNAi screens as a method for identifying novel genes regulating tumorigenesis.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias da Mama/genética , Genes Supressores de Tumor , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Genes p53 , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interferência de RNA , RNA Interferente Pequeno
14.
Genes Chromosomes Cancer ; 50(12): 982-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21882282

RESUMO

Anaplasia in Wilms tumor, a distinctive histology characterized by abnormal mitoses, is associated with poor patient outcome. While anaplastic tumors frequently harbour TP53 mutations, little is otherwise known about their molecular biology. We have used array comparative genomic hybridization (aCGH) and cDNA microarray expression profiling to compare anaplastic and favorable histology Wilms tumors to determine their common and differentiating features. In addition to changes on 17p, consistent with TP53 deletion, recurrent anaplasia-specific genomic loss and under-expression were noted in several other regions, most strikingly 4q and 14q. Further aberrations, including gain of 1q and loss of 16q were common to both histologies. Focal gain of MYCN, initially detected by high resolution aCGH profiling in 6/61 anaplastic samples, was confirmed in a significant proportion of both tumor types by a genomic quantitative PCR survey of over 400 tumors. Overall, these results are consistent with a model where anaplasia, rather than forming an entirely distinct molecular entity, arises from the general continuum of Wilms tumor by the acquisition of additional genomic changes at multiple loci.


Assuntos
Anaplasia/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 4 , Neoplasias Renais/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Tumor de Wilms/genética , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Análise em Microsséries/métodos , Proteína Proto-Oncogênica N-Myc , Recidiva Local de Neoplasia/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sobrevida
15.
J Clin Med ; 10(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435284

RESUMO

1. BACKGROUND: The application of massively parallel sequencing has led to the identification of aberrant druggable pathways and somatic mutations within therapeutically relevant genes in gastro-oesophageal cancer. Given the widespread use of formalin-fixed paraffin-embedded (FFPE) samples in the study of this disease, it would be beneficial, especially for the purposes of biomarker evaluation, to assess the concordance between comprehensive exome-wide sequencing data from archival FFPE samples originating from a prospective clinical study and those derived from fresh-frozen material. 2. METHODS: We analysed whole-exome sequencing data to define the mutational concordance of 16 matched fresh-frozen and FFPE gastro-oesophageal tumours (N = 32) from a prospective clinical study. We assessed DNA integrity prior to sequencing and then identified coding mutations in genes that have previously been implicated in other cancers. In addition, we calculated the mutant-allele heterogeneity (MATH) for these samples. 3. RESULTS: Although there was increased degradation of DNA in FFPE samples compared with frozen samples, sequencing data from only two FFPE samples failed to reach an adequate mapping quality threshold. Using a filtering threshold of mutant read counts of at least ten and a minimum of 5% variant allele frequency (VAF) we found that there was a high median mutational concordance of 97% (range 80.1-98.68%) between fresh-frozen and FFPE gastro-oesophageal tumour-derived exomes. However, the majority of FFPE tumours had higher mutant-allele heterogeneity (MATH) scores when compared with corresponding frozen tumours (p < 0.001), suggesting that FFPE-based exome sequencing is likely to over-represent tumour heterogeneity in FFPE samples compared to fresh-frozen samples. Furthermore, we identified coding mutations in 120 cancer-related genes, including those associated with chromatin remodelling and Wnt/ß-catenin and Receptor Tyrosine Kinase signalling. 4. CONCLUSIONS: These data suggest that comprehensive genomic data can be generated from exome sequencing of selected DNA samples extracted from archival FFPE gastro-oesophageal tumour tissues within the context of prospective clinical trials.

16.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34359755

RESUMO

Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer characterised by a high frequency of loss-of-function ARID1A mutations and a poor response to chemotherapy. Despite their generally low mutational burden, an intratumoural T cell response has been reported in a subset of OCCC, with ARID1A purported to be a biomarker for the response to the immune checkpoint blockade independent of micro-satellite instability (MSI). However, assessment of the different immune cell types and spatial distribution specifically within OCCC patients has not been described to date. Here, we characterised the immune landscape of OCCC by profiling a cohort of 33 microsatellite stable OCCCs at the genomic, gene expression and histological level using targeted sequencing, gene expression profiling using the NanoString targeted immune panel, and multiplex immunofluorescence to assess the spatial distribution and abundance of immune cell populations at the protein level. Analysis of these tumours and subsequent independent validation identified an immune-related gene expression signature associated with risk of recurrence of OCCC. Whilst histological quantification of tumour-infiltrating lymphocytes (TIL, Salgado scoring) showed no association with the risk of recurrence or ARID1A mutational status, the characterisation of TILs via multiplexed immunofluorescence identified spatial differences in immunosuppressive cell populations in OCCC. Tumour-associated macrophages (TAM) and regulatory T cells were excluded from the vicinity of tumour cells in low-risk patients, suggesting that high-risk patients have a more immunosuppressive microenvironment. We also found that TAMs and cytotoxic T cells were also excluded from the vicinity of tumour cells in ARID1A-mutated OCCCs compared to ARID1A wild-type tumours, suggesting that the exclusion of these immune effectors could determine the host response of ARID1A-mutant OCCCs to therapy. Overall, our study has provided new insights into the immune landscape and prognostic associations in OCCC and suggest that tailored immunotherapeutic approaches may be warranted for different subgroups of OCCC patients.

17.
J Pathol ; 219(1): 131-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19562735

RESUMO

The pathogenesis of late normal tissue fibrosis after high-dose ionizing radiation involves multiple cell types and signalling pathways but is not well understood. To identify the molecular changes occurring after radiotherapy, paired normal tissue samples were collected from the non-irradiated breast and from the treated breast of women who had undergone curative radiotherapy for early breast cancer months or years previously. As radiation may induce distinct transcriptional changes in the different components of the breast, laser capture microdissection and gene expression microarray profiling were performed separately for epithelial and stromal components and selected genes were validated using immunohistochemistry. In the epithelial compartment, a reduction of KIT (c-Kit; CD117) and a reciprocal increase in ESR1 (oestrogen receptor-alpha, ERalpha) mRNA and protein levels were seen in irradiated compared to non-irradiated samples. In the stromal compartment, extracellular matrix genes including FN1 (fibronectin 1) and CTGF (connective tissue growth factor; CCN2) were increased. Further investigation revealed that c-Kit and ERalpha were expressed in distinct subpopulations of luminal epithelial cells. Interlobular c-Kit-positive mast cells were also increased in irradiated cases not showing features of post-radiation atrophy. Pathway analysis revealed 'cancer, reproductive system disease and tumour morphology' as the most significantly enriched network in the epithelial compartment, whereas in the stromal component, a significant enrichment for 'connective tissue disorders, dermatological diseases and conditions, genetic disorder' and 'cancer, tumour morphology, infection mechanism' networks was observed. These data identify previously unreported changes in the epithelial compartment and show altered expression of genes implicated in late normal tissue injury in the stromal compartment of normal breast tissue. The findings are relevant to both fibrosis and atrophy occurring after radiotherapy for early breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Mama/efeitos da radiação , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Proteínas Proto-Oncogênicas c-kit/genética , Adulto , Idoso , Mama/metabolismo , Neoplasias da Mama/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Receptor alfa de Estrogênio/análise , Feminino , Fibrose , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Imuno-Histoquímica , Microdissecção , Microscopia Confocal , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-kit/análise , Estatísticas não Paramétricas , Células Estromais/metabolismo , Células Estromais/patologia , Células Estromais/efeitos da radiação
18.
J Pathol ; 218(3): 301-15, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19479727

RESUMO

Micropapillary carcinomas (MPCs) can present as a rare histological special type of breast cancer; however, this histological type is more frequently found admixed with invasive ductal carcinomas of no special type (IDC-NSTs). We have previously demonstrated that pure MPCs constitute a distinct entity at the morphological and genetic levels. Here, we sought to determine whether mixed MPCs have genomic aberrations similar to those found in pure MPCs, and to investigate whether the distinct morphological components of MPCs harbour different genetic aberrations. Using high-resolution microarray comparative genomic hybridization (aCGH), we profiled a series of 10 MPCs of mixed histology and 20 IDC-NSTs matched for grade and oestrogen receptor (ER) status. In addition, we generated tissue microarrays containing a series of 24 pure and 40 mixed MPCs and performed immunohistochemical analysis with ER, progesterone receptor (PR), Ki-67, HER2, cytokeratin (CK) 5/6, CK14, CK17, EGFR, topoisomerase-IIalpha, cyclin D1, caveolin-1 and E-cadherin antibodies. In situ hybridization was employed to evaluate the prevalence of HER2, TOP2A, EGFR, CCND1, MYC and FGFR1 gene amplification. Our results demonstrate that mixed MPCs harbour similar patterns of genomic aberrations and phenotype (82.5% luminal and 17.5% HER2) compared to pure MPCs. A comparison between the distinct morphological components of mixed MPCs in a pairwise fashion revealed that both components harbour strikingly similar genomic profiles. When compared to grade- and ER-matched IDC-NSTs, mixed MPCs significantly more frequently harboured amplification of multiple regions on 8q (adjusted Fisher's p value < 0.05). Furthermore, mixed MPCs displayed higher proliferative rates than grade- and ER-matched IDC-NSTs. Our results suggest that micropapillary differentiation in breast cancer may identify a subgroup of more aggressive ER-positive breast carcinomas, even in those featuring a mixed histology, and that mixed MPCs are more closely related to pure MPCs than to IDC-NSTs.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Papilar/genética , Neoplasias Complexas Mistas/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Aberrações Cromossômicas , Hibridização Genômica Comparativa , Feminino , Humanos , Imunofenotipagem , Proteínas de Neoplasias/metabolismo , Neoplasias Complexas Mistas/metabolismo , Neoplasias Complexas Mistas/patologia , Análise de Sequência com Séries de Oligonucleotídeos
19.
J Pathol ; 219(1): 16-24, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19670217

RESUMO

Approximately 8% of breast cancers show increased copy numbers of chromosome 17 centromere (CEP17) by fluorescence in situ hybridization (FISH) (ie average CEP17 >3.0 per nucleus). Currently, this pattern is believed to represent polysomy of chromosome 17. HER2-amplified cancers have been shown to harbour complex patterns of genetic aberrations of chromosome 17, in particular involving its long arm. We hypothesized that aberrant copy numbers of CEP17 in FISH assays may not necessarily represent true chromosome 17 polysomy. Eighteen randomly selected CEP17 polysomic cases and a control group of ten CEP17 disomic cases, as defined by dual-colour FISH, were studied by microarray-based comparative genomic hybridization (aCGH), which was performed on microdissected samples using a 32K tiling-path bacterial artificial chromosome microarray platform. Additional FISH probes were employed for SMS (17p11.2) and RARA (17q21.2) genes, as references for chromosome 17 copy number. Microarray-based comparative genomic hybridization revealed that 11 out of the 18 polysomic cases harboured gains of 17q with involvement of the centromere, one displayed 17q gain sparing the centromeric region, and only one could be defined as polysomic. The remaining five cases displayed amplification of the centromeric region. Among these, one case, showing score 2+ by immunohistochemistry and 8.5 HER2 mean copy number, was classified as not amplified by HER2/CEP17 ratio and as amplified by HER2/SMS ratio. Our results suggest that true chromosome 17 polysomy is likely to be a rare event in breast cancer and that CEP17 copy number greater than 3.0 in FISH analysis is frequently related to gain or amplification of the centromeric region. Larger studies investigating the genetic profiles of CEP17 polysomic cases are warranted.


Assuntos
Neoplasias da Mama/genética , Centrômero , Cromossomos Humanos Par 17 , Hibridização Genômica Comparativa , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Análise em Microsséries , Poliploidia , Receptor ErbB-2/genética , Receptores do Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico
20.
Clin Cancer Res ; 15(8): 2711-22, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19318498

RESUMO

PURPOSE: To characterize the molecular genetic profiles of grade 3 invasive ductal carcinomas of no special type using high-resolution microarray-based comparative genomic hybridization (aCGH) and to identify recurrent amplicons harboring putative therapeutic targets associated with luminal, HER-2, and basal-like tumor phenotypes. EXPERIMENTAL DESIGN: Ninety-five grade 3 invasive ductal carcinomas of no special type were classified into luminal, HER-2, and basal-like subgroups using a previously validated immunohistochemical panel. Tumor samples were microdissected and subjected to aCGH using a tiling path 32K BAC array platform. Selected regions of recurrent amplification were validated by means of in situ hybridization. Expression of genes pertaining to selected amplicons was investigated using quantitative real-time PCR and gene silencing was done using previously validated short hairpin RNA constructs. RESULTS: We show that basal-like and HER-2 tumors are characterized by "sawtooth" and "firestorm" genetic patterns, respectively, whereas luminal cancers were more heterogeneous. Apart from confirming known amplifications associated with basal-like (1q21, 10p, and 12p), luminal (8p12, 11q13, and 11q14), and HER-2 (17q12) cancers, we identified previously unreported recurrent amplifications associated with each molecular subgroup: 19q12 in basal-like, 1q32.1 in luminal, and 14q12 in HER-2 cancers. PPM1D gene amplification (17q23.2) was found in 20% and 8% of HER-2 and luminal cancers, respectively. Silencing of PPM1D by short hairpin RNA resulted in selective loss of viability in tumor cell lines harboring the 17q23.2 amplification. CONCLUSIONS: Our results show the power of aCGH analysis in unraveling the genetic profiles of specific subgroups of cancer and for the identification of novel therapeutic targets.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Ciclina D1/genética , Receptor alfa de Estrogênio/genética , Amplificação de Genes/genética , Dosagem de Genes/genética , Perfilação da Expressão Gênica , Inativação Gênica , Genes erbB-1/genética , Genes erbB-2/genética , Humanos , Estadiamento de Neoplasias , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA