Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37260408

RESUMO

Nutritional and metabolic cues are integral to animal development. Organisms use them both as sustenance and environmental indicators, fueling, informing and influencing developmental decisions. Classical examples, such as the Warburg effect, clearly illustrate how genetic programs control metabolic changes. However, the way that nutrition and metabolism can also modulate or drive genetic programs to instruct developmental trajectories is much more elusive, owing to several difficulties including uncoupling permissive and instructive functions. Here, we discuss recent advancements in the field that highlight the developmental role of nutritional and metabolic cues across multiple levels of organismal complexity.


Assuntos
Fenômenos Fisiológicos da Nutrição , Animais
2.
Curr Genet ; 61(4): 517-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25567623

RESUMO

The experimental evidence from the last decade made telomerase a prominent member of a family of moonlighting proteins performing different functions at various cellular loci. However, the study of extratelomeric functions of the catalytic subunit of mammalian telomerase (TERT) is often complicated by the fact that it is sometimes difficult to distinguish them from its role(s) at the chromosomal ends. Here, we present an experimental model for studying the extranuclear function(s) of mammalian telomerase in the yeast Saccharomyces cerevisiae. We demonstrate that the catalytic subunit of mammalian telomerase protects the yeast cells against oxidative stress and affects the stability of the mitochondrial genome. The advantage of using S. cerevisiae to study of mammalian telomerase is that (1) mammalian TERT does not interfere with its yeast counterpart in the maintenance of telomeres, (2) yeast telomerase is not localized in mitochondria and (3) it does not seem to be involved in the protection of cells against oxidative stress and stabilization of mtDNA. Thus, yeast cells can be used as a 'test tube' for reconstitution of mammalian TERT extranuclear function(s).


Assuntos
Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Telomerase/genética , Telômero/metabolismo , Animais , Domínio Catalítico/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/genética , Fusarium/metabolismo , Engenharia Genética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Modelos Biológicos , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/genética , Neurospora crassa/metabolismo , Estresse Oxidativo , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismo , Telômero/ultraestrutura , Transformação Genética , Vitamina K 3/farmacologia
3.
Methods Mol Biol ; 2450: 619-633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359332

RESUMO

Cells of the freshwater cnidarian Hydra possess an exceptional regeneration ability. In small groups of these cells, organizer centers emerge spontaneously and instruct the patterning of the surrounding population into a new animal. This property makes them an excellent model system to study the general rules of self-organization. A small tissue fragment or a clump of randomly aggregated cells can form a hollow spheroid that is able to establish a body axis de novo. Interestingly, mechanical oscillations (inflation/deflation cycles of the spheroid) driven by osmosis accompany the successful establishment of axial polarity. Here we describe different approaches for generating Hydra tissue spheroids, along with imaging and image analysis techniques to investigate their mechanical behavior.


Assuntos
Hydra , Animais , Modelos Biológicos
4.
Sci Adv ; 8(51): eabo0694, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563144

RESUMO

The molecular mechanisms that maintain cellular identities and prevent dedifferentiation or transdifferentiation remain mysterious. However, both processes are transiently used during animal regeneration. Therefore, organisms that regenerate their organs, appendages, or even their whole body offer a fruitful paradigm to investigate the regulation of cell fate stability. Here, we used Hydra as a model system and show that Zic4, whose expression is controlled by Wnt3/ß-catenin signaling and the Sp5 transcription factor, plays a key role in tentacle formation and tentacle maintenance. Reducing Zic4 expression suffices to induce transdifferentiation of tentacle epithelial cells into foot epithelial cells. This switch requires the reentry of tentacle battery cells into the cell cycle without cell division and is accompanied by degeneration of nematocytes embedded in these cells. These results indicate that maintenance of cell fate by a Wnt-controlled mechanism is a key process both during homeostasis and during regeneration.

5.
Sci Adv ; 7(50): eabj6897, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890235

RESUMO

Mechanical input shapes cell fate decisions during development and regeneration in many systems, yet the mechanisms of this cross-talk are often unclear. In regenerating Hydra tissue spheroids, periodic osmotically driven inflation and deflation cycles generate mechanical stimuli in the form of tissue stretching. Here, we demonstrate that tissue stretching during inflation is important for the appearance of the head organizer­a group of cells that secrete the Wnt3 ligand. Exploiting time series RNA expression profiles, we identify the up-regulation of Wnt signaling as a key readout of the mechanical input. In this system, the levels of Wnt3 expression correspond to the levels of stretching, and Wnt3 overexpression alone enables successful regeneration in the absence of mechanical stimulation. Our findings enable the incorporation of mechanical signals in the framework of Hydra patterning and highlight the broad significance of mechanochemical feedback loops for patterning epithelial lumens.

6.
Biochem Mol Biol Educ ; 46(1): 22-30, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28858410

RESUMO

As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to write intentionally flawed manuscripts describing the results of simple experiments. The teams are supervised by instructors advising the students during manuscript writing, choosing the 'appropriate' errors, monitoring the identification of errors made by the other team and evaluating the strength of their arguments in support of the identified errors. We have compared the effectiveness of the method with a journal club-type seminar. Based on the results of our assessment we propose that the described seminar may effectively complement the existing approaches to teach critical scientific thinking. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):22-30, 2018.


Assuntos
Relatório de Pesquisa , Ciência/educação , Estudantes/psicologia , Ensino , Humanos , Relatório de Pesquisa/normas , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA