Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 62: 235-254, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34516293

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. ß-Amyloid 42 (Aß42) oligomers interact with a mGluR5/cellular prion protein (PrPC) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered.


Assuntos
Doença de Alzheimer , Receptor de Glutamato Metabotrópico 5 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/uso terapêutico , Transdução de Sinais
2.
J Neurosci ; 43(23): 4365-4377, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37055181

RESUMO

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disease characterized by progressive motor and cognitive impairments, with no disease-modifying therapies yet available. HD pathophysiology involves evident impairment in glutamatergic neurotransmission leading to severe striatal neurodegeneration. The vesicular glutamate transporter-3 (VGLUT3) regulates the striatal network that is centrally affected by HD. Nevertheless, current evidence on the role of VGLUT3 in HD pathophysiology is lacking. Here, we crossed mice lacking Slc17a8 gene (VGLUT3 -/-) with heterozygous zQ175 knock-in mouse model of HD (zQ175:VGLUT3 -/-). Longitudinal assessment of motor and cognitive functions from 6 to 15 months of age reveals that VGLUT3 deletion rescues motor coordination and short-term memory deficits in both male and female zQ175 mice. VGLUT3 deletion also rescues neuronal loss likely via the activation of Akt and ERK1/2 in the striatum of zQ175 mice of both sexes. Interestingly, the rescue in neuronal survival in zQ175:VGLUT3 -/- mice is accompanied by a reduction in the number of nuclear mutant huntingtin (mHTT) aggregates with no change in the total aggregate levels or microgliosis. Collectively, these findings provide novel evidence that VGLUT3, despite its limited expression, can be a vital contributor to HD pathophysiology and a viable target for HD therapeutics.SIGNIFICANCE STATEMENT Dysregulation of the striatal network centrally contributes to the pathophysiology of Huntington's disease (HD). The atypical vesicular glutamate transporter-3 (VGLUT3) has been shown to regulate several major striatal pathologies, such as addiction, eating disorders, or L-DOPA-induced dyskinesia. Yet, our understanding of VGLUT3's role in HD remains unclear. We report here that deletion of the Slc17a8 (Vglut3) gene rescues the deficits in both motor and cognitive functions in HD mice of both sexes. We also find that VGLUT3 deletion activates neuronal survival signaling and reduces nuclear aggregation of abnormal huntingtin proteins and striatal neuron loss in HD mice. Our novel findings highlight the vital contribution of VGLUT3 in HD pathophysiology that can be exploited for HD therapeutic management.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Camundongos , Masculino , Feminino , Animais , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteína Huntingtina/genética
3.
Drug Metab Dispos ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626992

RESUMO

In vitro models that can faithfully replicate critical aspects of kidney tubule function such as directional drug transport are in high demand in pharmacology and toxicology. Accordingly, development and validation of new models is underway. The objective of this study was to characterize physiological and transport functions of various sources of human renal proximal tubule epithelial cells (RPTECs). We tested TERT1-immortalized RPTEC, including OAT1-, OCT2- or OAT3-overexpressing variants, and primary RPTECs. Cells were cultured on transwell membranes in static (24-well transwells) and fluidic (transwells in PhysioMimix{trade mark, serif} T12 organ-on-chip with 2 mL/s flow) conditions. Barrier formation, transport, and gene expression were evaluated. We show that two commercially available primary RPTECs were not suitable for studies of directional transport on transwells because they formed a substandard barrier even though they exhibited higher expression of transporters, especially under flow. TERT1-parent, -OAT1 and -OAT3 cells formed robust barriers, but were unaffected by flow. TERT1-OAT1 cells exhibited inhibitable para-aminohippurate transport, it was enhanced by flow. However, efficient tenofovir secretion and perfluorooctanoic acid reabsorption by TERT1-OAT1 cells were not modulated by flow. Gene expression showed that TERT1 and TERT1-OAT1 cells were most correlated with human kidney than other cell lines, but that flow did not have noticeable effects. Overall, our data show that addition of flow to in vitro studies of the renal proximal tubule may afford benefits in some aspects of modeling kidney function, but that careful consideration of the impact such adaptations would have on the cost and throughput of the experiments is needed. Significance Statement The topic of reproducibility and robustness of the complex microphysiological systems is looming large in the field of biomedical research; therefore, the uptake of these new models by the end-users is slow. This study systematically compared various RPTEC sources and experimental conditions, aiming to identify the level of model complexity needed for testing renal tubule transport. We demonstrate that while tissue chips may afford some benefits, their throughput and complexity need careful consideration in each context of use.

4.
Toxicol Appl Pharmacol ; 489: 117015, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917890

RESUMO

Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CLrenal) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems. This study aimed to compare CLrenal predictions for PFAS using in vitro models of varying complexity (96-well plates, static 24-well Transwells and a fluidic microphysiological model, all using human telomerase reverse transcriptase-immortalized and OAT1-overexpressing RPTECs combined with in silico physiologically-based IVIVE. Three PFAS were tested: one with a long half-life (PFOS) and two with shorter half-lives (PFHxA and PFBS). PFAS were added either individually (5 µM) or as a mixture (2 µM of each substance) for 48 h. Bayesian methods were used to fit concentrations measured in media and cells to a three-compartmental model to obtain the in vitro permeability rates, which were then used as inputs for a physiologically-based IVIVE model to estimate in vivo CLrenal. Our predictions for human CLrenal of PFAS were highly concordant with available values from in vivo human studies. The relative values of CLrenal between slow- and faster-clearance PFAS were most highly concordant between predictions from 2D culture and corresponding in vivo values. However, the predictions from the more complex model (with or without flow) exhibited greater concordance with absolute CLrenal. Overall, we conclude that a combined in vitro-in silico workflow can predict absolute CLrenal values, and effectively distinguish between PFAS with slow and faster clearance, thereby allowing prioritization of PFAS with a greater potential for bioaccumulation in humans.

5.
Anal Bioanal Chem ; 416(1): 175-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910202

RESUMO

Consumers have unprecedented access to botanical dietary supplements through online retailers, making it difficult to ensure product quality and authenticity. Therefore, methods to survey and compare chemical compositions across botanical products are needed. Nuclear magnetic resonance (NMR) spectroscopy and non-targeted mass spectrometry (MS) were used to chemically analyze commercial products labeled as containing one of three botanicals: blue cohosh, goldenseal, and yohimbe bark. Aqueous and organic phase extracts were prepared and analyzed in tandem with NMR followed by MS. We processed the non-targeted data using multivariate statistics to analyze the compositional similarity across extracts. In each case, there were several product outliers that were identified using principal component analysis (PCA). Evaluation of select known constituents proved useful to contextualize PCA subgroups, which in some cases supported or refuted product authenticity. The NMR and MS data reached similar conclusions independently but were also complementary.


Assuntos
Produtos Biológicos , Caulophyllum , Hydrastis , Pausinystalia/química , Hydrastis/química , Caulophyllum/química , Casca de Planta/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética , Produtos Biológicos/análise
6.
Hepatology ; 74(6): 3486-3496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34105804

RESUMO

Hazard identification regarding adverse effects on the liver is a critical step in safety evaluations of drugs and other chemicals. Current testing paradigms for hepatotoxicity rely heavily on preclinical studies in animals and human data (epidemiology and clinical trials). Mechanistic understanding of the molecular and cellular pathways that may cause or exacerbate hepatotoxicity is well advanced and holds promise for identification of hepatotoxicants. One of the challenges in translating mechanistic evidence into robust decisions about potential hepatotoxicity is the lack of a systematic approach to integrate these data to help identify liver toxicity hazards. Recently, marked improvements were achieved in the practice of hazard identification of carcinogens, female and male reproductive toxicants, and endocrine disrupting chemicals using the key characteristics approach. Here, we describe the methods by which key characteristics of human hepatotoxicants were identified and provide examples for how they could be used to systematically identify, organize, and use mechanistic data when identifying hepatotoxicants.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia
7.
J Pharmacol Exp Ther ; 379(1): 74-84, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34330748

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that leads to progressive motor impairments with no available disease-modifying treatment. Current evidence indicates that exacerbated postsynaptic glutamate signaling in the striatum plays a key role in the pathophysiology of HD. However, it remains unclear whether reducing glutamate release can be an effective approach to slow the progression of HD. Here, we show that the activation of metabotropic glutamate receptors 2 and 3 (mGluR2/3), which inhibit presynaptic glutamate release, improves HD symptoms and pathology in heterozygous zQ175 knockin mice. Treatment of both male and female zQ175 mice with the potent and selective mGluR2/3 agonist LY379268 for either 4 or 8 weeks improves both limb coordination and locomotor function in all mice. LY379268 also reduces mutant huntingtin aggregate formation, neuronal cell death, and microglial activation in the striatum of both male and female zQ175 mice. The reduction in mutant huntingtin aggregates correlates with the activation of a glycogen synthase kinase 3ß-dependent autophagy pathway in male, but not female, zQ175 mice. Furthermore, LY379268 reduces both Akt and ERK1/2 phosphorylation in male zQ175 mice but increases both Akt and ERK1/2 phosphorylation in female zQ175 mice. Taken together, our results indicate that mGluR2/3 activation mitigates HD neuropathology in both male and female mice but is associated with the differential activation and inactivation of cell signaling pathways in heterozygous male and female zQ175 mice. This further highlights the need to take sex into consideration when developing future HD therapeutics. SIGNIFICANCE STATEMENT: The mGluR2/3 agonist LY379268 improves motor impairments and reduces pathology in male and female zQ175 Huntington's disease mice. The beneficial outcomes of LY379268 treatment in Huntington's disease mice were mediated by divergent cell signaling pathways in both sexes. We provide evidence that mGluR2/3 agonists can be repurposed for the treatment of Huntington's disease, and we emphasize the importance of investigating sex as a biological variable in preclinical disease-modifying studies.


Assuntos
Heterozigoto , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Desempenho Psicomotor/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Feminino , Força da Mão/fisiologia , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Transgênicos , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética
8.
J Psychiatry Neurosci ; 46(1): E1-E13, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32559027

RESUMO

Background: Glutamate transmission is implicated in drug-induced behavioural sensitization and the associated long-lasting increases in mesolimbic output. Metabotropic glutamate type 5 (mGlu5) receptors might be particularly important, but most details are poorly understood. Methods: We first assessed in mice (n = 51, all male) the effects of repeated dextroamphetamine administration (2.0 mg/kg, i.p.) on locomotor activity and binding of the mGlu5 ligand [3H]ABP688. In a parallel study, in 19 stimulant-drug-naïve healthy human volunteers (14 female) we administered 3 doses of dextroamphetamine (0.3 mg/kg, p.o.) or placebo, followed by a fourth dose 2 weeks later. We measured [11C]ABP688 binding using positron emission tomography before and after the induction phase. We assessed psychomotor and behavioural sensitization using speech rate, eye blink rate and self-report. We measured the localization of mGlu5 relative to synaptic markers in mouse striatum using immunofluorescence. Results: We observed amphetamine-induced psychomotor sensitization in mice and humans. We did not see group differences in mGlu5 availability following 3 pre-challenge amphetamine doses, but group differences did develop in mice administered 5 doses. In mice and humans, individual differences in mGlu5 binding after repeated amphetamine administration were negatively correlated with the extent of behavioural sensitization. In drug-naïve mice, mGlu5 was expressed at 67% of excitatory synapses on dendrites of striatal medium spiny neur. Limitations: Correlational results should be interpreted as suggestive because of the limited sample size. We did not assess sex differences. Conclusion: Together, these results suggest that changes in mGlu5 availability are not part of the earliest neural adaptations in stimulant-induced behavioural sensitization, but low mGlu5 binding might identify a higher propensity for sensitization.


Assuntos
Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado , Dextroanfetamina/farmacologia , Locomoção/efeitos dos fármacos , Córtex Pré-Frontal , Desempenho Psicomotor/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Adulto , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dextroanfetamina/administração & dosagem , Feminino , Imunofluorescência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oximas/farmacocinética , Tomografia por Emissão de Pósitrons , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Piridinas/farmacocinética , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores
9.
Mol Pharmacol ; 98(4): 314-327, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32873747

RESUMO

Cross talk between both pre- and postsynaptic components of glutamatergic neurotransmission plays a crucial role in orchestrating a multitude of brain functions, including synaptic plasticity and motor planning. Metabotropic glutamate receptor (mGluR) 5 exhibits promising therapeutic potential for many neurodevelopmental and neurodegenerative disorders as a consequence of its modulatory control over diverse neuronal networks required for memory, motor coordination, neuronal survival, and differentiation. Given these crucial roles, mGluR5 signaling is under the tight control of glutamate release machinery mediated through vesicular glutamate transporters (VGLUTs) that ultimately dictate glutamatergic output. A particular VGLUT isoform, VGLUT3, exhibits an overlapping, but unique, distribution with mGluR5, and the dynamic cross talk between mGluR5 and VGLUT3 is key for the function of specific neuronal networks involved in motor coordination, emotions, and cognition. Thus, aberrant signaling of the VGLUT3-mGluR5 axis is linked to various pathologies including, but not limited to, Parkinson disease, anxiety disorders, and drug addiction. We argue that a comprehensive profiling of how coordinated VGLUT3-mGluR5 signaling influences overall glutamatergic neurotransmission is warranted. SIGNIFICANCE STATEMENT: Vesicular glutamate receptor (VGLUT) 3 machinery orchestrates glutamate release, and its distribution overlaps with metabotropic glutamate receptor (mGluR) 5 in regional brain circuitries, including striatum, hippocampus, and raphe nucleus. Therefore, VGLUT3-mGluR5 cross talk can significantly influence both physiologic and pathophysiologic glutamatergic neurotransmission. Pathological signaling of the VGLUT3-mGluR5 axis is linked to Parkinson disease, anxiety disorders, and drug addiction. However, it is also predicted to contribute to other motor and cognitive disorders.


Assuntos
Comportamento/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Encéfalo/metabolismo , Humanos , Transdução de Sinais , Transmissão Sináptica
10.
Environ Res ; 169: 163-172, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30458352

RESUMO

Currently, there are >11,000 synthetic turf athletic fields in the United States and >13,000 in Europe. Concerns have been raised about exposure to carcinogenic chemicals resulting from contact with synthetic turf fields, particularly the infill material ("crumb rubber"), which is commonly fabricated from recycled tires. However, exposure data are scant, and the limited existing exposure studies have focused on a small subset of crumb rubber components. Our objective was to evaluate the carcinogenic potential of a broad range of chemical components of crumb rubber infill using computational toxicology and regulatory agency classifications from the United States Environmental Protection Agency (US EPA) and European Chemicals Agency (ECHA) to inform future exposure studies and risk analyses. Through a literature review, we identified 306 chemical constituents of crumb rubber infill from 20 publications. Utilizing ADMET Predictor™, a computational program to predict carcinogenicity and genotoxicity, 197 of the identified 306 chemicals met our a priori carcinogenicity criteria. Of these, 52 chemicals were also classified as known, presumed or suspected carcinogens by the US EPA and ECHA. Of the remaining 109 chemicals which were not predicted to be carcinogenic by our computational toxicology analysis, only 6 chemicals were classified as presumed or suspected human carcinogens by US EPA or ECHA. Importantly, the majority of crumb rubber constituents were not listed in the US EPA (n = 207) and ECHA (n = 262) databases, likely due to an absence of evaluation or insufficient information for a reliable carcinogenicity classification. By employing a cancer hazard scoring system to the chemicals which were predicted and classified by the computational analysis and government databases, several high priority carcinogens were identified, including benzene, benzidine, benzo(a)pyrene, trichloroethylene and vinyl chloride. Our findings demonstrate that computational toxicology assessment in conjunction with government classifications can be used to prioritize hazardous chemicals for future exposure monitoring studies for users of synthetic turf fields. This approach could be extended to other compounds or toxicity endpoints.


Assuntos
Carcinógenos , Exposição Ambiental , Borracha , Elastômeros , Europa (Continente) , Humanos , Compostos Orgânicos , Estados Unidos
11.
J Biol Chem ; 291(34): 17602-15, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27358397

RESUMO

Activation of Group I metabotropic glutamate receptors (mGluRs) activates signaling cascades, resulting in calcium release from intracellular stores, ERK1/2 activation, and long term changes in synaptic activity that are implicated in learning, memory, and neurodegenerative diseases. As such, elucidating the molecular mechanisms underlying Group I mGluR signaling is important for understanding physiological responses initiated by the activation of these receptors. In the current study, we identify the multifunctional scaffolding protein spinophilin as a novel Group I mGluR-interacting protein. We demonstrate that spinophilin interacts with the C-terminal tail and second intracellular loop of Group I mGluRs. Furthermore, we show that interaction of spinophilin with Group I mGluRs attenuates receptor endocytosis and phosphorylation of ERK1/2, an effect that is dependent upon the interaction of spinophilin with the C-terminal PDZ binding motif encoded by Group I mGluRs. Spinophilin knock-out results in enhanced mGluR5 endocytosis as well as increased ERK1/2, AKT, and Ca(2+) signaling in primary cortical neurons. In addition, the loss of spinophilin expression results in impaired mGluR5-stimulated LTD. Our results indicate that spinophilin plays an important role in regulating the activity of Group I mGluRs as well as their influence on synaptic activity.


Assuntos
Sinalização do Cálcio/fisiologia , Endocitose/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Células HEK293 , Humanos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico/genética
12.
Pharmacol Res ; 115: 179-191, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872019

RESUMO

Glutamate is the most important excitatory neurotransmitter of the mammalian central nervous system (CNS), playing an important role in memory, synaptic plasticity and neuronal development. However, glutamate overstimulation is also implicated in neuronal cell death. There are two major types of glutamate receptors: ionotropic and metabotropic. Thus far, eight metabotropic glutamate receptors (mGluRs) subtypes have been characterized and are divided into three subgroups based on sequence homology and cell signaling activation. mGluRs activate a wide variety of cell signaling pathways by G protein-coupled pathways or via G protein-independent cell signaling activation. Moreover, these receptors exhibit widespread distribution in the CNS and are implicated in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). This review aims to discuss the latest updates concerning mGluRs and their role in neurodegenerative diseases. mGluRs agonists and antagonists as well as positive and negative allosteric modulators have been tested in several animal models of neurodegenerative diseases. Furthermore, mGluR knockout mouse models have been crossed to mouse models of AD and HD, providing important data about mGluRs role in neurodegenerative disease progression. Thus, mGluRs constitute potential therapeutic targets for the development of therapies to treat neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Neurotransmissores/metabolismo , Transdução de Sinais/fisiologia
13.
Analyst ; 142(23): 4415-4421, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29090690

RESUMO

The early stages of Alzheimer's disease pathogenesis are thought to occur at the synapse level, since synapse loss can be directly correlated with memory dysfunction. Considerable evidence has suggested that amyloid beta (Aß), a secreted proteolytic derivative of amyloid precursor protein, appears to be a critical factor in the early 'synaptic failure' that is observed in Alzheimer's disease pathogenesis. The identification of Aß at neuronal spines with high spatial resolution and high surface specificity would facilitate unraveling the intricate effect of Aß on synapse loss and its effect on neighboring neuronal connections. Here, tip-enhanced Raman spectroscopy was used to map the presence of Aß aggregations in the vicinity of the spines exposed to Aß preformed in vitro. Exposure to Aß was of 1 and 6 hours. The intensity variation of selected vibrational modes of Aß was mapped by TERS for different exposure times to Aß. Of interest, we discuss the distinct contributions of the amide modes from Aß that are enhanced by the TERS process and in particular the suppression of the amide I mode in the context of recently reported observations in the literature.


Assuntos
Peptídeos beta-Amiloides/química , Análise Espectral Raman , Sinapses/patologia , Doença de Alzheimer , Humanos
14.
Environ Sci Technol ; 51(18): 10786-10796, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28809115

RESUMO

In vitro-in vivo extrapolation (IVIVE) analyses translating high-throughput screening (HTS) data to human relevance have been limited. This study represents the first report applying IVIVE approaches and exposure comparisons using the entirety of the Tox21 federal collaboration chemical screening data, incorporating assay response efficacy and quality of concentration-response fits, and providing quantitative anchoring to first address the likelihood of human in vivo interactions with Tox21 compounds. This likelihood was assessed using a maximum blood concentration to in vitro response ratio approach (Cmax/AC50), analogous to decision-making methods for clinical drug-drug interactions. Fraction unbound in plasma (fup) and intrinsic hepatic clearance (CLint) parameters were estimated in silico and incorporated in a three-compartment toxicokinetic (TK) model to first predict Cmax for in vivo corroboration using therapeutic scenarios. Toward lower exposure scenarios, 36 compounds of 3925 unique chemicals with curated activity in the HTS data using high-quality dose-response model fits and ≥40% efficacy gave "possible" human in vivo interaction likelihoods lower than median human exposures predicted in the United States Environmental Protection Agency's ExpoCast program. A publicly available web application has been designed to provide all Tox21-ToxCast dose-likelihood predictions. Overall, this approach provides an intuitive framework to relate in vitro toxicology data rapidly and quantitatively to exposures using either in vitro or in silico derived TK parameters and can be thought of as an important step toward estimating plausible biological interactions in a high-throughput risk-assessment framework.


Assuntos
Simulação por Computador , Interações Medicamentosas , Modelos Biológicos , Medição de Risco , Toxicocinética , Bioensaio , Poluentes Ambientais , Substâncias Perigosas , Humanos , Estados Unidos , United States Environmental Protection Agency
15.
J Biol Chem ; 290(8): 5141-5155, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561731

RESUMO

Hypertension, elevated arterial pressure, occurs as the consequence of increased peripheral resistance. G protein-coupled receptors (GPCRs) contribute to the regulation of vasodilator and vasoconstrictor responses, and their activity is regulated by a family of GPCR kinases (GRKs). GRK2 expression is increased in hypertension and this facilitates the development of the hypertensive state by increasing the desensitization of GPCRs important for vasodilation. We demonstrate here, that genetic knockdown of GRK2 using a small hairpin (sh) RNA results in altered vascular reactivity and the development of hypertension between 8-12 weeks of age in shGRK2 mice due to enhanced Gαq/11 signaling. Vascular smooth muscle cells (VSMCs) cultured from shGRK2 knockdown mice show increases in GPCR-mediated Gαs and Gαq/11 signaling, as the consequence of reduced GRK2-mediated desensitization. In addition, agonists and biased agonists exhibited age-dependent alterations in ERK1/2 and Akt signaling, as well as cell proliferation and migration responses in shGRK2 knockdown VSMCs when cultured from mice that are either 3 months or 6 months of age. Changes in angiotensin II-stimulated ERK1/2 phosphorylation are observed in VSMCs derived from 6-week-old shGRK2 mice prior to the development of the hypertensive phenotype. Thus, our findings indicate that the balance between mechanisms regulating vascular tone are shifted to favor vasoconstriction in the absence of GRK2 expression and that this leads to the age-dependent development of hypertension, as a consequence of global alterations in GPCR signaling. Consequently, therapeutic strategies that target GRK2 activity, not expression, may be more effective for the treatment of hypertension.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/deficiência , Hipertensão/metabolismo , Sistema de Sinalização das MAP Quinases , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Técnicas de Silenciamento de Genes , Hipertensão/genética , Hipertensão/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Hum Mol Genet ; 23(8): 2030-42, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24282028

RESUMO

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin protein, which promotes progressive neuronal cell loss, neurological symptoms and death. In the present study, we show that blockade of mGluR5 with MTEP promotes increased locomotor activity in both control (Hdh(Q20/Q20)) and mutant HD (Hdh(Q111/Q111)) mice. Although acute injection of MTEP increases locomotor activity in both control and mutant HD mice, locomotor activity is increased in only control mice, not mutant HD mice, following the genetic deletion of mGluR5. Interestingly, treatment of mGluR5 knockout mice with either D1 or D2 dopamine antagonists eliminates the increased locomotor activity of mGluR5 knockout mice. Amphetamine treatment increases locomotor activity in control mice, but not mGluR5 null mutant HD mice. However, the loss of mGluR5 expression improves rotarod performance and decreases the number of huntingtin intranuclear inclusions in mutant HD mice. These adaptations may be due to mutant huntingtin-dependent alterations in gene expression, as microarray studies have identified several genes that are altered in mutant, but not wild-type HD mice lacking mGluR5 expression. qPCR experiments confirm that the mRNA transcript levels of dynein heavy chain, dynactin 3 and dynein light chain-6 are altered following the genetic deletion of mGluR5 in mutant HD mice, as compared with wild-type mutant HD mice. Thus, our data suggest that mutant huntingtin protein and mGluR5 exhibit a functional interaction that may be important for HD-mediated alterations in locomotor behavior and the development of intranuclear inclusions.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/patologia , Corpos de Inclusão Intranuclear/patologia , Atividade Motora/fisiologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Doença de Huntington/genética , Doença de Huntington/metabolismo , Técnicas Imunoenzimáticas , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/metabolismo , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Piridinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiazóis/farmacologia
17.
Drug Metab Dispos ; 44(9): 1463-79, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338863

RESUMO

Over the last decade HepaRG cells have emerged as a promising alternative to primary human hepatocytes (PHH) and have been featured in over 300 research publications. Most of these reports employed freshly differentiated HepaRG cells that require time-consuming culture (∼28 days) for full differentiation. Recently, a cryopreserved, predifferentiated format of HepaRG cells (termed here "cryo-HepaRG") has emerged as a new model that improves global availability and experimental flexibility; however, it is largely unknown whether HepaRG cells in this format fully retain their hepatic characteristics. Therefore, we systematically investigated the hepatocyte functionality of cryo-HepaRG cultures in context with the range of interindividual variation observed with PHH in both sandwich-culture and suspension formats. These evaluations uncovered a novel adaptation period for the cryo-HepaRG format and demonstrated the impact of extracellular matrix on cryo-HepaRG functionality. Pharmacologically important drug-metabolizing alleles were genotyped in HepaRG cells and poor metabolizer alleles for CYP2D6, CYP2C9, and CYP3A5 were identified and consistent with higher frequency alleles found in individuals of Caucasian decent. We observed liver enzyme inducibility with aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor activators comparable to that of sandwich-cultured PHH. Finally, we show for the first time that cryo-HepaRG supports proper CAR cytosolic sequestration and translocation to hepatocyte nuclei in response to phenobarbital treatment. Taken together, these data reveal important considerations for the use of this cell model and demonstrate that cryo-HepaRG are suitable for metabolism and toxicology screening.


Assuntos
Criopreservação , Hepatócitos/citologia , Técnicas de Cultura de Células , Sistema Enzimático do Citocromo P-450/biossíntese , Indução Enzimática , Genótipo , Hepatócitos/enzimologia , Humanos , Reprodutibilidade dos Testes
18.
PLoS Comput Biol ; 11(12): e1004634, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26657340

RESUMO

Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Imagem Molecular/métodos , Complexos Multiproteicos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Software , Algoritmos , Gráficos por Computador , Simulação por Computador , Modelos Químicos , Complexos Multiproteicos/ultraestrutura , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Interface Usuário-Computador
19.
Analyst ; 141(11): 3251-8, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27067958

RESUMO

Tip-enhanced Raman spectroscopy (TERS) provides greatly enhanced Raman signals along with ultra-high lateral spatial resolutions and has been demonstrated to be a technique of choice to study a variety of biochemical specimens such as DNA and RNA at the single chain level. However, the sensitivity of TERS to demonstrate the influence of the nanoscale environment on DNA properties has not been investigated. Herein, we used a gap-mode TERS as an ultra-sensitive label-free technique to investigate the influence of the local plasmid on the DNA properties of a ß2-adrenergic receptor (ß2AR). Remarkable lateral spatial resolutions down to 8 nm were also acquired for the collected Raman signals under ambient conditions. This approach offers not only a tool to examine the influence of the local nanoscale environment surrounding the DNA structure, but also the localization of the majority of nucleic acid base(s) present in selected regions on the DNA strand.


Assuntos
DNA/química , Plasmídeos/química , Receptores Adrenérgicos beta 2/química , Análise Espectral Raman , Humanos
20.
Mol Pharmacol ; 88(4): 624-39, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25808930

RESUMO

G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and leukemia-associated RhoGEF), RGS3 and RGS12, spinophilin and neurabin-1, SRC homology 3 domain and multiple ankyrin repeat domain (Shank) proteins (Shank1, Shank2, and Shank3), partitioning defective proteins 3 and 6, multiple PDZ protein 1, Tamalin, neuronal nitric oxide synthase, syntrophins, protein interacting with protein kinase C α 1, syntenin-1, and sorting nexin 27.


Assuntos
Domínios PDZ/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA