Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 91(1): 266-278, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743354

RESUMO

Studying natal dispersal in natural populations using capture-recapture data is challenging as an unknown proportion of individuals leaves the study area when dispersing and are never recaptured. Most dispersal (and survival) estimates from capture-recapture studies are thus biased and only reflect what happens within the study area, not the population. Here, we elaborate on recent methodological advances to build a spatially explicit multi-state capture-recapture model to study natal dispersal in a territorial mammal while accounting for imperfect detection and movement in and out of the study area. We validate our model using a simulation study where we compare it to a non-spatial multi-state capture-recapture model. We then apply it to a long-term individual-based dataset on Alpine marmot Marmota marmota. Our model was able to accurately estimate natal dispersal and survival probabilities, as well as mean dispersal distance for a large range of dispersal patterns. By contrast, the non-spatial multi-state estimates underestimated both survival and natal dispersal even for short dispersal distances relative to the study area size. We discuss the application of our approach to other species and monitoring setups. We estimated higher inheritance probabilities of female Alpine marmots, which suggests higher levels of philopatry, although the probability to become dominant after dispersal did not differ between sexes. Nonetheless, the lower survival of young adult males suggests higher costs of dispersal for males. We further discuss the implications of our findings in light of the life history of the species.


Assuntos
Marmota , Animais , Simulação por Computador , Feminino , Masculino
2.
BMC Evol Biol ; 14: 79, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24716470

RESUMO

BACKGROUND: In most species, males compete to gain both matings (via pre-copulatory competition) and fertilizations (via post-copulatory competition) to maximize their reproductive success. However, the quantity of resources devoted to sexual traits is finite, and so males are predicted to balance their investment between pre- and post-copulatory expenditure depending on the expected pay-offs that should vary according to mating tactics. In Artiodactyla species, males can invest in weapons such as horns or antlers to increase their mating gains or in testes mass/sperm dimensions to increase their fertilization efficiency. Moreover, it has been suggested that in these species, males with territory defence mating tactic might preferentially increase their investment in post-copulatory traits to increase their fertilization efficiency whereas males with female defence mating tactic might increase their investment in pre-copulatory sexually selected traits to prevent other males from copulating with females. In this study, we thus test the prediction that male's weapon length (pre-copulatory trait) covaries negatively with relative testes size and/or sperm dimensions (post-copulatory traits) across Artiodactyla using a phylogenetically controlled framework. RESULTS: Surprisingly no association between weapon length and testes mass is found but a negative association between weapon length and sperm length is evidenced. In addition, neither pre- nor post-copulatory traits were found to be affected by male mating tactics. CONCLUSIONS: We propose several hypotheses that could explain why male ungulates may not balance their reproductive investment between pre- and post-copulatory traits.


Assuntos
Reprodução , Ruminantes/fisiologia , Comportamento Sexual Animal , Animais , Copulação , Feminino , Cornos/fisiologia , Masculino , Filogenia , Ruminantes/genética , Testículo/fisiologia
3.
Mol Ecol Resour ; 23(8): 1905-1913, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37675830

RESUMO

Single-nucleotide polymorphism (SNP) analysis is a powerful tool for population genetics, pedigree reconstruction and phenotypic trait mapping. However, the untapped potential of SNP markers to discriminate the sex of individuals in species with reduced sexual dimorphism or of individuals during immature stages remains a largely unexplored avenue. Here, we developed a novel protocol for molecular sexing of birds based on the detection of unique Z- and W-linked SNP markers. Our method is based on the identification of two unique loci, one in each sexual chromosome. Individuals are considered males when they show no calls for the W-linked SNP and are heterozygous or homozygous for the Z-linked SNP, while females exhibit both Z- and W-linked SNP calls. We validated the method in the Jackdaw (Corvus monedula). The reduced sexual dimorphism in this species makes it difficult to identify the sex of individuals in the wild. We assessed the reliability of the method using 36 individuals of known sex and found that their sex was correctly assigned in 100% of cases. The sex-linked markers also proved to be widely applicable for discriminating males and females from a sample of 927 genotyped individuals at different maturity stages, with an accuracy of 99.5%. Since SNP markers are increasingly used in quantitative genetic analyses of wild populations, the approach we propose has great potential to be integrated into broader genetic research programmes without the need for additional sexing techniques.


Assuntos
Aves , Caracteres Sexuais , Humanos , Masculino , Feminino , Animais , Reprodutibilidade dos Testes , Genótipo , Aves/genética , Heterozigoto , Polimorfismo de Nucleotídeo Único
4.
Ecol Evol ; 10(20): 11408-11422, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144974

RESUMO

The degree of coexistence among predators can determine the structure of ecological communities. Niche partitioning is a common strategy applied by species to enhance their coexistence. Diet, habitat, or time use can be responsible for segregation among carnivore species, the latter factor being the least studied in Mediterranean ecosystems. Terrestrial medium-sized carnivores (i.e., mesocarnivores) carry out important functions in ecosystems, and identifying their interactions is essential for their conservation.In this study, we explore the activity of a terrestrial mesocarnivore guild in order to determine seasonal differences in daily activity patterns of competitors and prey. We also investigate how the abundance of a common mesocarnivore prey in the region, small mammals, influences the activity of predators.During a year, camera trap devices (n = 18) were installed in Montseny Natural Park (Catalan Pre-Coastal Range, North-East Iberian Peninsula), a region that hosts five mesocarnivore species. Camera trapping detections were used to estimate their daily activity patterns and corresponding overlaps. We also surveyed small mammal plots (n = 5) in order to calculate prey abundance and test its effect on the relative activity of each carnivore species.Despite all target mesocarnivores are mainly nocturnal, the activity overlap among them varies according to species particularities and season. Red fox (Vulpes vulpes) appears as a generalist species in terms of time use, whereas stone marten (Martes foina) and genet (Genetta genetta) show the most similar activity patterns and both of them seem to be positively influenced by small mammal abundance. Overall, the diversity found in the way mesocarnivore species use time could facilitate their coexistence.Despite activity pattern similarities among carnivore species should not be directly translated to negative interactions, they can have a strong influence in habitat and resource-limited ecosystems. Therefore, activity overlaps should be taken into account when discussing wildlife management actions.

5.
Ecol Evol ; 6(13): 4243-57, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27386072

RESUMO

Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA