Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 146(5): 697-708, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884932

RESUMO

AKT activation is associated with many malignancies, where AKT acts, in part, by inhibiting FOXO tumor suppressors. We show a converse role for AKT/FOXOs in acute myeloid leukemia (AML). Rather than decreased FOXO activity, we observed that FOXOs are active in ∼40% of AML patient samples regardless of genetic subtype. We also observe this activity in human MLL-AF9 leukemia allele-induced AML in mice, where either activation of Akt or compound deletion of FoxO1/3/4 reduced leukemic cell growth, with the latter markedly diminishing leukemia-initiating cell (LIC) function in vivo and improving animal survival. FOXO inhibition resulted in myeloid maturation and subsequent AML cell death. FOXO activation inversely correlated with JNK/c-JUN signaling, and leukemic cells resistant to FOXO inhibition responded to JNK inhibition. These data reveal a molecular role for AKT/FOXO and JNK/c-JUN in maintaining a differentiation blockade that can be targeted to inhibit leukemias with a range of genetic lesions.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Antígenos CD34/metabolismo , Apoptose , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Proteína Forkhead Box O3 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo
2.
J Biol Chem ; 300(5): 107214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522521

RESUMO

The role of polyunsaturated fatty acid (PUFA) biosynthesis in acute myeloid leukemia (AML) remains largely undefined. A comparative expression analysis of 35 genes encoding fatty acid biosynthesis enzymes showed that fatty acid desaturase 1 (FADS1) was highly expressed across multiple AML subtypes relative to healthy controls and that elevated FADS1 expression correlates with worse overall AML patient survival. Functionally, shRNA-mediated inhibition of FADS1 reduced AML cell growth in vitro and significantly delayed leukemia onset in an AML mouse model. AML cell lines depleted of FADS1 arrested in the G1/S-phase of the cell cycle, acquired characteristics of myeloid maturation and subsequently died. To understand the molecular consequences of FADS1 inhibition, a combination of mass spectrometry-based analysis of complex lipids and gene expression analysis (RNA-seq) was performed. FADS1 inhibition caused AML cells to exhibit significant lipidomic remodeling, including depletion of PUFAs from the phospholipids, phosphatidylserine, and phosphatidylethanolamine. These lipidomic alterations were accompanied by an increase induction of inflammatory and stimulator of interferon genes (STING)-mediated type-1 interferon signaling. Remarkably, genetic deletion of STING largely prevented the AML cell maturation and death phenotypes mediated by FADS1 inhibition. Highlighting the therapeutic implications of these findings, pharmacological blockade of PUFA biosynthesis reduced patient-derived AML cell numbers ex vivo but not that of healthy donor cells. Similarly, STING agonism attenuated patient-derived-AML survival; however, STING activation also reduced healthy granulocyte numbers. Collectively, these data unveil a previously unrecognized importance of PUFA biosynthesis in leukemogenesis and that imbalances in PUFA metabolism can drive STING-mediated AML maturation and death.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Leucemia Mieloide Aguda , Proteínas de Membrana , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Animais , Humanos , Camundongos , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Morte Celular , Transdução de Sinais
3.
Am J Med Genet A ; 194(6): e63555, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38326731

RESUMO

Heterozygous pathogenic variants in KDM6B have recently been associated to a rare neurodevelopmental disorder referred to as "Neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities" and characterized by non-pathognomonic facial and body dysmorphisms, a wide range of neurodevelopmental and behavioral disorders and nonspecific neuroradiological findings. KDM6B encodes a histone demethylase, expressed in different tissues during development, which regulates gene expression through the modulation of chromatin accessibility by RNA polymerase. We herein describe a 11-year-old male patient carrying a novel de novo pathogenic variant in KDM6B exhibiting facial dysmorphisms, dysgraphia, behavioral traits relatable to oppositional defiant, autism spectrum, and attention deficit hyperactivity disorders, a single seizure episode, and a neuroimaging finding of a single cerebellar heterotopic nodule, never described to date in this genetic condition. These findings expand the phenotypic spectrum of this syndrome, highlighting the potential role for KDM6B in cerebellar development and providing valuable insights for genetic counseling.


Assuntos
Cerebelo , Histona Desmetilases com o Domínio Jumonji , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Criança , Histona Desmetilases com o Domínio Jumonji/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Cerebelo/anormalidades , Cerebelo/patologia , Cerebelo/diagnóstico por imagem , Fenótipo , Mutação/genética
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845035

RESUMO

Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell-mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.


Assuntos
Tolerância Imunológica/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Feminino , Humanos , Tolerância Imunológica/imunologia , Cariótipo , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico , Recidiva , Indução de Remissão , Fatores de Risco , Análise de Sequência de RNA/métodos , Células Th1/imunologia , Transcriptoma/genética , Resultado do Tratamento
5.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768848

RESUMO

Breast cancer stem cells (BCSCs) are responsible for tumour recurrence and therapy resistance. We have established primary BCSC cultures from human tumours of triple-negative breast cancer (TNBC), a subgroup of breast cancer likely driven by BCSCs. Primary BCSCs produce xenografts that phenocopy the tumours of origin, making them an ideal model for studying breast cancer treatment options. In the TNBC cell line MDA-MB-468, we previously screened kinases whose depletion elicited a differentiation response, among which IRAK2 was identified. Because primary BCSCs are enriched in IRAK2, we wondered whether IRAK2 downregulation might affect cellular growth. IRAK2 was downregulated in primary BCSCs and MDA-MB-468 by lentiviral delivery of shRNA, causing a decrease in cellular proliferation and sphere-forming capacity. When orthotopically transplanted into immunocompromised mice, IRAK2 knockdown cells produced smaller xenografts than control cells. At the molecular level, IRAK2 downregulation reduced NF-κB and ERK phosphorylation, IL-6 and cyclin D1 expression, ERN1 signalling and autophagy in a cell line-dependent way. Overall, IRAK2 downregulation decreased cellular aggressive growth and pathways often exploited by cancer cells to endure stress; therefore, IRAK2 may be considered an interesting target to compromise TNBC progression.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
6.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499220

RESUMO

The V-domain Ig suppressor of T-cell activation (VISTA) has been recognized as a critical negative regulator of antitumor immune response and is gaining growing interest as a potential pharmacological target in immunotherapy. This molecule is highly expressed in hematopoietic stem cells and myeloid compartment, and it has been found upmodulated in acute myeloid leukemia (AML). However, VISTA-associated immune features are relatively unexplored in myeloid malignancies. Herein, we aimed to explore whether this immune checkpoint regulator could play a role in the generation of an immune escape environment in AML patients. We characterized VISTA mRNA expression levels in leukemia cell lines and in large publicly available cohorts of specimens from bone marrow of healthy individuals and AML patients at diagnosis by deploying bulk and single-cell RNA sequencing. We also defined the correlations with leukemia-associated burden using results of whole-exome sequencing of AML samples at disease onset. We showed that VISTA expression linearly increased across the myeloid differentiation tree in normal hematopoiesis. Accordingly, its transcript was highly enriched in AML cell lines as well as in AML patients at diagnosis presenting with myelomonocytic and monocytic differentiation. A strong correlation was seen with NPM1 mutations regardless of the presence of FLT3 lesions. Furthermore, VISTA expression levels at baseline correlated with disease recurrence in patients with normal karyotype and NPM1 mutations, a subgroup traditionally considered as favorable according to current diagnostic schemes. Indeed, when compared to patients with long-term remission (>5 years after standard chemotherapy regimens), cases relapsing within 2 years from diagnosis had increased VISTA expression in both leukemia and T cells. Our results suggest a rationale for developing VISTA-targeted therapeutic strategies to treat molecularly defined subgroups of AML patients to prevent disease recurrence and treatment resistance.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Prognóstico , Mutação , Nucleofosmina , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
7.
Nature ; 508(7495): 269-73, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24590072

RESUMO

Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (<32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (∼9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.


Assuntos
Medula Óssea/metabolismo , Oxigênio/análise , Animais , Artérias/metabolismo , Medula Óssea/irrigação sanguínea , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Bussulfano/farmacologia , Hipóxia Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hipóxia/diagnóstico , Hipóxia/metabolismo , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Nestina/metabolismo , Oxigênio/metabolismo , Fótons , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/efeitos da radiação
8.
Nature ; 495(7441): 365-9, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23485965

RESUMO

To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury. Despite considerable advances in the specific cellular or molecular mechanisms governing HSC-niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E2 (PGE2) on HSC function ex vivo. Here we show that inhibition of endogenous PGE2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1-CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.


Assuntos
Dinoprostona/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco/citologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Benzilaminas , Contagem de Células , Movimento Celular/fisiologia , Células Cultivadas , Ciclamos , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Humanos , Meloxicam , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/genética , Papio , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Células-Tronco/efeitos dos fármacos , Tiazinas/farmacologia , Tiazóis/farmacologia
9.
Ecotoxicol Environ Saf ; 161: 578-583, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29929134

RESUMO

Chlorothalonil is an important broad spectrum fungicide widely used in agriculture, silviculture, and urban settings. As a result of its massive use, chlorothalonil was found in all environmental matrices, with consequent risks to the health of terrestrial and aquatic organisms, as well as for humans. We analyzed the effects of chlorothalonil on human lymphocytes using in vitro chromosomal aberrations (CAs) and micronuclei (MNi) assays. Lymphocytes were exposed to five concentrations of chlorothalonil: 0.600 µg/mL, 0.060 µg/mL, 0.030 µg/mL, 0.020 µg/mL, and 0.015 µg/mL, where 0.020 and 0.600 µg/mL represent the ADI and the ARfD concentration values, respectively, established by FAO/WHO for this compound; 0.030 and 0.060 µg/mL represent intermediate values of these concentrations and 0.015 µg/mL represents the ADI value established by the Canadian health and welfare agency. We observed cytogenetic effects of chlorothalonil on cultured human lymphocytes in terms of increased CAs and MNi frequencies at all tested concentrations, including the FAO/WHO ADI and ARfD values of 0.020 and 0.600 µg/mL, respectively, but with exception of the Canadian ADI value of 0.015 µg/mL. Finally, no sexes differences were found in the levels of CAs and MNi induced by different chlorothalonil concentrations. Similarly, the mitotic index and the cytokinesis-block proliferation index did not show any significant effect on the proliferative capacity of the cells, although at the chlorothalonil concentration of 0.600 µg/mL the P-values of both indices were borderline.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Poluentes Ambientais/toxicidade , Fungicidas Industriais/toxicidade , Linfócitos/efeitos dos fármacos , Nitrilas/toxicidade , Adulto , Células Cultivadas , Citocinese/efeitos dos fármacos , Citocinese/genética , Relação Dose-Resposta a Droga , Feminino , Humanos , Linfócitos/patologia , Masculino , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Índice Mitótico
10.
Subst Abus ; 39(3): 289-306, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29436984

RESUMO

BACKGROUND: Smokers with major depressive disorder (MDD) or depressive symptoms (DS) represent a subgroup in need of attention, since they have specific clinical features and prognosis. METHODS: A systematic review of the literature (Cochrane, MEDLINE, ScienceDirect, Web of Science databases from inception to June 2017) of randomized clinical trials assessing the effectiveness of pharmacological, psychological, or combined interventions for smoking cessation in subjects with current or past MDD/DS without medical or comorbid psychiatric disorder(s) was run following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Twenty-seven studies met the inclusion criteria. Nicotine, varenicline, and staged-care intervention were more effective in smokers with current MDD; nicotine and fluoxetine plus nicotine were more effective in smokers with DS; naltrexone and nicotine plus fluoxetine were more effective in smokers with severe current DS. Cognitive-behavioral therapy and cognitive and behavioral cessation and relapse prevention skills training were superior to placebo in smokers with past MDD. CONCLUSIONS: More research is needed into effectively addressing smoking in people with concurrent mental disorder. Data currently available need to be confirmed in randomized trials aimed at replicating the results and disentangling the effects of each therapeutic ingredient when a combination therapy is proposed. Studies on tolerability of treatments are warranted, as well as those aimed at identifying factors of vulnerability to adverse effects.


Assuntos
Fumar Cigarros/tratamento farmacológico , Fumar Cigarros/prevenção & controle , Depressão/complicações , Transtorno Depressivo Maior/complicações , Abandono do Hábito de Fumar/métodos , Abandono do Hábito de Fumar/psicologia , Antidepressivos/uso terapêutico , Terapia Combinada , Depressão/terapia , Transtorno Depressivo Maior/terapia , Humanos , Psicoterapia , Agentes de Cessação do Hábito de Fumar/uso terapêutico
12.
Blood ; 124(19): 2937-47, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25202142

RESUMO

The glycosyltransferase gene, Ext1, is essential for heparan sulfate production. Induced deletion of Ext1 selectively in Mx1-expressing bone marrow (BM) stromal cells, a known population of skeletal stem/progenitor cells, in adult mice resulted in marked changes in hematopoietic stem and progenitor cell (HSPC) localization. HSPC egressed from BM to spleen after Ext1 deletion. This was associated with altered signaling in the stromal cells and with reduced vascular cell adhesion molecule 1 production by them. Further, pharmacologic inhibition of heparan sulfate mobilized qualitatively more potent and quantitatively more HSPC from the BM than granulocyte colony-stimulating factor alone, including in a setting of granulocyte colony-stimulating factor resistance. The reduced presence of endogenous HSPC after Ext1 deletion was associated with engraftment of transfused HSPC without any toxic conditioning of the host. Therefore, inhibiting heparan sulfate production may provide a means for avoiding the toxicities of radiation or chemotherapy in HSPC transplantation for nonmalignant conditions.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Heparitina Sulfato/biossíntese , N-Acetilglucosaminiltransferases/metabolismo , Células Estromais/metabolismo , Condicionamento Pré-Transplante , Animais , Anticoagulantes/farmacologia , Ligação Competitiva/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Proteínas de Fluorescência Verde/genética , Heparina/farmacologia , Heparitina Sulfato/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Estromais/imunologia , Molécula 1 de Adesão de Célula Vascular/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
Nature ; 466(7308): 829-34, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20703299

RESUMO

The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin(+) MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent 'mesenspheres' that can self-renew and expand in serial transplantations. Nestin(+) MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or beta3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin(+) cells and favours their osteoblastic differentiation, in vivo nestin(+) cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin(+) MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin(+) cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Divisão Celular , Linhagem da Célula/efeitos dos fármacos , Movimento Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Hormônio Paratireóideo/farmacologia , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Sistema Nervoso Simpático/fisiologia
14.
Blood ; 122(7): 1305-11, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23838351

RESUMO

During thrombopoiesis, megakaroycytes undergo extensive cytoskeletal remodeling to form proplatelet extensions that eventually produce mature platelets. Proplatelet formation is a tightly orchestrated process that depends on dynamic regulation of both tubulin reorganization and Rho-associated, coiled-coil containing protein kinase/RhoA activity. A disruption in tubulin dynamics or RhoA activity impairs proplatelet formation and alters platelet morphology. We previously observed that protein kinase Cepsilon (PKCε), a member of the protein kinase C family of serine/threonine-kinases, expression varies during human megakaryocyte differentiation and modulates megakaryocyte maturation and platelet release. Here we used an in vitro model of murine platelet production to investigate a potential role for PKCε in proplatelet formation. By immunofluorescence we observed that PKCε colocalizes with α/ß-tubulin in specific areas of the marginal tubular-coil in proplatelets. Moreover, we found that PKCε expression escalates during megakarocyte differentiation and remains elevated in proplatelets, whereas the active form of RhoA is substantially downregulated in proplatelets. PKCε inhibition resulted in lower proplatelet numbers and larger diameter platelets in culture as well as persistent RhoA activation. Finally, we demonstrate that pharmacological inhibition of RhoA is capable of reversing the proplatelet defects mediated by PKCε inhibition. Collectively, these data indicate that by regulating RhoA activity, PKCε is a critical mediator of mouse proplatelet formation in vitro.


Assuntos
Plaquetas/citologia , Megacariócitos/citologia , Proteína Quinase C-épsilon/metabolismo , Trombopoese/fisiologia , Tubulina (Proteína)/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Plaquetas/metabolismo , Western Blotting , Diferenciação Celular , Células Cultivadas , Feto/citologia , Feto/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Fígado/citologia , Fígado/metabolismo , Megacariócitos/metabolismo , Camundongos , RNA Interferente Pequeno/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(23): 9607-12, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21606370

RESUMO

Engraftment and maintenance of hematopoietic stem and progenitor cells (HSPC) depend on their ability to respond to extracellular signals from the bone marrow microenvironment, but the critical intracellular pathways integrating these signals remain poorly understood. Furthermore, recent studies provide contradictory evidence of the roles of vascular versus osteoblastic niche components in HSPC function. To address these questions and to dissect the complex upstream regulation of Rac GTPase activity in HSPC, we investigated the role of the hematopoietic-specific guanine nucleotide exchange factor Vav1 in HSPC localization and engraftment. Using intravital microscopy assays, we demonstrated that transplanted Vav1(-/-) HSPC showed impaired early localization near nestin(+) perivascular mesenchymal stem cells; only 6.25% of Vav1(-/-) HSPC versus 45.8% of wild-type HSPC were located less than 30 µm from a nestin(+) cell. Abnormal perivascular localization correlated with decreased retention of Vav1(-/-) HSPC in the bone marrow (44-60% reduction at 48 h posttransplant, compared with wild-type) and a very significant defect in short- and long-term engraftment in competitive and noncompetitive repopulation assays (<1.5% chimerism of Vav1(-/-) cells vs. 53-63% for wild-type cells). The engraftment defect of Vav1(-/-) HSPC was not related to alterations in proliferation, survival, or integrin-mediated adhesion. However, Vav1(-/-) HSPC showed impaired responses to SDF1α, including reduced in vitro migration in time-lapse microscopy assays, decreased circadian and pharmacologically induced mobilization in vivo, and dysregulated Rac/Cdc42 activation. These data suggest that Vav1 activity is required specifically for SDF1α-dependent perivascular homing of HSPC and suggest a critical role for this localization in retention and subsequent engraftment.


Assuntos
Medula Óssea/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Animais , Western Blotting , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia de Vídeo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-vav/genética , Fator de Células-Tronco/farmacologia , Fatores de Tempo , Proteínas rho de Ligação ao GTP/metabolismo
16.
Semin Hematol ; 61(1): 22-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341340

RESUMO

Immune surveillance mechanisms play a crucial role in maintaining lifelong immune homeostasis in response to pathologic stimuli and aberrant cell states. However, their persistence, especially in the context of chronic antigenic exposure, can create a fertile ground for immune evasion. These escaping cell phenotypes, harboring a variety of genomic and transcriptomic aberrances, chiefly in human leukocyte antigen (HLA) and antigen presentation machinery genes, may survive and proliferate, featuring a scenario of clonal cell expansion with immune failure characteristics. While well characterized in solid and, to some extent, hematological malignancies, little is known about their occurrence and significance in other disease contexts. Historical literature highlights the role for escaping HLA-mediated recognition as a strategy adopted by virus to evade from the immune system, hinting at the potential for immune aberrant cell expansion in the context of chronic infections. Additionally, unmasked in idiopathic aplastic anemia as a mechanism able to rescue failing hematopoiesis, HLA clonal escape may operate in autoimmune disorders, particularly in tissues targeted by aberrant immune responses. Furthermore, senescent cell status emerging as immunogenic phenotypes stimulating T cell responses, may act as a bottleneck for the selection of such immune escaping clones, blurring the boundaries between neoplastic transformation, aging and inflammation. Here we provide a fresh overview and perspective on this immune-driven clonal cell expansion, linking pathophysiological features of neoplastic, autoimmune, infectious and senescence processes exposed to immune surveillance.


Assuntos
Anemia Aplástica , Doenças Autoimunes , Neoplasias , Humanos , Autoimunidade , Neoplasias/genética , Antígenos HLA , Células Clonais/patologia
17.
Clin Cancer Res ; 30(15): 3220-3228, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446993

RESUMO

PURPOSE: Clonal hematopoiesis (CH) is thought to be the origin of myeloid neoplasms (MN). Yet, our understanding of the mechanisms driving CH progression to MN and clinical risk prediction of MN remains limited. The human proteome reflects complex interactions between genetic and epigenetic regulation of biological systems. We hypothesized that the plasma proteome might predict MN risk and inform our understanding of the mechanisms promoting MN development. EXPERIMENTAL DESIGN: We jointly characterized CH and plasma proteomic profiles of 46,237 individuals in the UK Biobank at baseline study entry. During 500,036 person-years of follow-up, 115 individuals developed MN. Cox proportional hazard regression was used to test for an association between plasma protein levels and MN risk. RESULTS: We identified 115 proteins associated with MN risk, of which 30% (N = 34) were also associated with CH. These were enriched for known regulators of the innate and adaptive immune system. Plasma proteomics improved the prediction of MN risk (AUC = 0.85; P = 5×10-9) beyond clinical factors and CH (AUC = 0.80). In an independent group (N = 381,485), we used inherited polygenic risk scores (PRS) for plasma protein levels to validate the relevance of these proteins toMNdevelopment. PRS analyses suggest that most MN-associated proteins we identified are not directly causally linked toMN risk, but rather represent downstream markers of pathways regulating the progression of CH to MN. CONCLUSIONS: These data highlight the role of immune cell regulation in the progression of CH to MN and the promise of leveraging multi-omic characterization of CH to improveMN risk stratification. See related commentary by Bhalgat and Taylor, p. 3095.


Assuntos
Biomarcadores Tumorais , Proteômica , Humanos , Proteômica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Idoso , Proteoma , Hematopoiese Clonal , Fatores de Risco , Adulto , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Prognóstico
18.
Clin Cancer Res ; 30(16): 3622-3639, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38848040

RESUMO

PURPOSE: Somatic missense mutations in the phosphodegron domain of the MYC gene (MYC Box I or MBI) are detected in the dominant clones of a subset of patients with acute myeloid leukemia (AML), but the mechanisms by which they contribute to AML are unknown. EXPERIMENTAL DESIGN: To investigate the effects of MBI MYC mutations on hematopoietic cells, we employed a multi-omic approach to systematically compare the cellular and molecular consequences of expressing oncogenic doses of wild type, threonine-58 and proline-59 mutant MYC proteins in hematopoietic cells, and we developed a knockin mouse harboring the germline MBI mutation p.T58N in the Myc gene. RESULTS: Both wild-type and MBI mutant MYC proteins promote self-renewal programs and expand highly selected subpopulations of progenitor cells in the bone marrow. Compared with their wild-type counterparts, mutant cells display decreased cell death and accelerated leukemogenesis in vivo, changes that are recapitulated in the transcriptomes of human AML-bearing MYC mutations. The mutant phenotypes feature decreased stability and translation of mRNAs encoding proapoptotic and immune-regulatory genes, increased translation of RNA binding proteins and nuclear export machinery, and distinct nucleocytoplasmic RNA profiles. MBI MYC mutant proteins also show a higher propensity to aggregate in perinuclear regions and cytoplasm. Like the overexpression model, heterozygous p.T58N knockin mice displayed similar changes in subcellular MYC localization, progenitor expansion, transcriptional signatures, and develop hematopoietic tumors. CONCLUSIONS: This study uncovers that MBI MYC mutations alter RNA nucleocytoplasmic transport mechanisms to contribute to the development of hematopoietic malignancies.


Assuntos
Leucemia Mieloide Aguda , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Humanos , Transporte Ativo do Núcleo Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Técnicas de Introdução de Genes , Modelos Animais de Doenças , Carcinogênese/genética
19.
Blood ; 117(5): 1540-9, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21131587

RESUMO

Osteoblasts play a crucial role in the hematopoietic stem cell (HSC) niche; however, an overall increase in their number does not necessarily promote hematopoiesis. Because the activity of osteoblasts and osteoclasts is coordinately regulated, we hypothesized that active bone-resorbing osteoclasts would participate in HSC niche maintenance. Mice treated with bisphosphonates exhibited a decrease in proportion and absolute number of Lin(-)cKit(+)Sca1(+) Flk2(-) (LKS Flk2(-)) and long-term culture-initiating cells in bone marrow (BM). In competitive transplantation assays, the engraftment of treated BM cells was inferior to that of controls, confirming a decrease in HSC numbers. Accordingly, bisphosphonates abolished the HSC increment produced by parathyroid hormone. In contrast, the number of colony-forming-unit cells in BM was increased. Because a larger fraction of LKS in the BM of treated mice was found in the S/M phase of the cell cycle, osteoclast impairment makes a proportion of HSCs enter the cell cycle and differentiate. To prove that HSC impairment was a consequence of niche manipulation, a group of mice was treated with bisphosphonates and then subjected to BM transplantation from untreated donors. Treated recipient mice experienced a delayed hematopoietic recovery compared with untreated controls. Our findings demonstrate that osteoclast function is fundamental in the HSC niche.


Assuntos
Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Difosfonatos/farmacologia , Células-Tronco Hematopoéticas/patologia , Sistema Hematopoético/fisiologia , Osteoclastos/efeitos dos fármacos , Nicho de Células-Tronco/fisiologia , Animais , Western Blotting , Conservadores da Densidade Óssea/farmacologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Reabsorção Óssea/metabolismo , Divisão Celular/fisiologia , Células Cultivadas , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Antígenos Comuns de Leucócito/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/metabolismo , Hormônio Paratireóideo/farmacologia , Fase S/fisiologia , Nicho de Células-Tronco/efeitos dos fármacos , Antígenos Thy-1/fisiologia , Tomografia Computadorizada por Raios X
20.
Blood ; 118(10): 2849-56, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21765021

RESUMO

Hematopoietic stem cells (HSCs) engage in complex bidirectional signals with the hematopoietic microenvironment (HM), and there is emerging evidence that leukemia stem cells (LSCs) may use similar interactions. Using a syngeneic retroviral model of MLL-AF9 induced acute myeloid leukemia (AML), we have identified 2 different stages of leukemia progression, propagated by "pre-LSCs" and established leukemia (LSCs) and compared the homing properties of these distinctive entities to that of normal HSCs. The homing and microlocalization of pre-LSCs was most similar to long-term HSCs and was dependent on cell-intrinsic Wnt signaling. In contrast, the homing of established LSCs was most similar to that of committed myeloid progenitors and distinct from HSCs. Although osteoblast-derived Dickkopf-1, a potent Wnt inhibitor known to impair HSC function, dramatically impaired normal HSC localization within the bone marrow, it did not affect pre-LSCs, LSC homing, or AML development. Mechanistically, cell-intrinsic Wnt activation was observed in human and murine AML samples, explaining the independence of MLL-AF9 LSCs from niche-derived Wnt signals. These data identify differential engagement of HM associated with leukemic progression and identify an LSC niche that is physically distinct and independent of the constraints of Wnt signaling that apply to normal HSCs.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco , Proteínas Wnt/metabolismo , Animais , Western Blotting , Medula Óssea/metabolismo , Medula Óssea/patologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA