Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 94(3): 66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26843447

RESUMO

Oocyte quality is known to be a major cause of infertility in repeat-breeder (RB) and heat-stressed dairy cows. However, the mechanisms by which RB oocytes become less capable of supporting embryo development remain largely unknown. Thus, the aim of this study was to investigate whether the decreased oocyte competence of RB cows (RBs) during summer is associated with an altered gene expression profile and a decrease in mitochondrial DNA (mtDNA) copy number. Therefore, oocytes collected from heifers, non-RBs in peak lactation (PLs), and RBs were used to evaluate mtDNA amounts as well as the expression levels of genes associated with the mitochondria (MT-CO1, NRF1, POLG, POLG2, PPARGC1A, and TFAM), apoptosis (BAX, BCL2, and ITM2B), and oocyte maturation (BMP15, FGF8, FGF10, FGF16, FGF17, and GDF9). The oocytes retrieved from RBs during winter contained over eight times more mtDNA than those retrieved from RBs during summer. They also contained significantly less mtDNA than oocytes retrieved from heifers and PLs during summer. Moreover, the expression of mitochondria- (NRF1, POLG, POLG2, PPARGC1A, and TFAM) and apoptosis-related (BAX and ITM2B) genes, as well as of GDF9, in RB oocytes collected during summer was significantly greater than that in oocytes collected from heifers and PLs during the same season. In oocytes from heifers and PLs, the expression levels of these genes were lower in those collected during summer compared with winter, but this difference was not observed in oocytes collected from RBs. Altogether, these data provide evidence of altered gene expression and reduced mtDNA copy number in the oocytes collected from RBs during summer. This indicates a loss of fertility in RBs during summer, which might be caused by a possible mitochondrial dysfunction associated with a greater chance of oocytes to undergo apoptosis.


Assuntos
Apoptose/fisiologia , Bovinos/fisiologia , DNA Mitocondrial/metabolismo , Infertilidade Feminina , Oócitos/fisiologia , Estações do Ano , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Mitocôndrias/fisiologia , Paridade , Gravidez
2.
PLoS One ; 9(3): e93287, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24676354

RESUMO

Oocytes from dairy cattle and buffaloes have severely compromised developmental competence during summer. While analysis of gene expression is a powerful technique for understanding the factors affecting developmental hindrance in oocytes, analysis by real-time reverse transcription PCR (RT-PCR) relies on the correct normalization by reference genes showing stable expression. Furthermore, several studies have found that genes commonly used as reference standards do not behave as expected depending on cell type and experimental design. Hence, it is recommended to evaluate expression stability of candidate reference genes for a specific experimental condition before employing them as internal controls. In acknowledgment of the importance of seasonal effects on oocyte gene expression, the aim of this study was to evaluate the stability of expression levels of ten well-known reference genes (ACTB, GAPDH, GUSB, HIST1H2AG, HPRT1, PPIA, RPL15, SDHA, TBP and YWHAZ) using oocytes collected from different categories of dairy cattle and buffaloes during winter and summer. A normalization factor was provided for cattle (RPL15, PPIA and GUSB) and buffaloes (YWHAZ, GUSB and GAPDH) based on the expression of the three most stable reference genes in each species. Normalization of non-reference target genes by these reference genes was shown to be considerably different from normalization by less stable reference genes, further highlighting the need for careful selection of internal controls. Therefore, due to the high variability of reference genes among experimental groups, we conclude that data normalized by internal controls can be misleading and should be compared to not normalized data or to data normalized by an external control in order to better interpret the biological relevance of gene expression analysis.


Assuntos
Expressão Gênica , Genes Essenciais , Oócitos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Animais , Búfalos , Bovinos , Indústria de Laticínios , Feminino , Perfilação da Expressão Gênica , Oócitos/citologia , Padrões de Referência , Estações do Ano
3.
Cell Reprogram ; 12(3): 231-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20698765

RESUMO

Nuclear-mitochondrial incompatibilities may be responsible for the development failure reported in embryos and fetuses produced by interspecies somatic cell nuclear transfer (iSCNT). Herein we performed xenooplasmic transfer (XOT) by introducing 10 to 15% of buffalo ooplasm into bovine zygotes to assess its effect on the persistence of buffalo mitochondrial DNA (mtDNA). Blastocyst rates were not compromised by XOT in comparison to both in vitro fertilized embryos and embryos produced by transfer of bovine ooplasm into bovine zygotes. Moreover, offspring were born after transfer of XOT embryos to recipient cows. Buffalo mtDNA introduced in zygotes was still present at the blastocyst stage (8.3 vs. 9.3%, p = 0.11), indicating unaltered heteroplasmy during early development. Nonetheless, no vestige of buffalo mtDNA was found in offspring, indicating a drift to homoplasmy during later stages of development. In conclusion, we show that the buffalo mtDNA introduced by XOT into a bovine zygote do not compromise embryo development. On the other hand, buffalo mtDNA was not inherited by offspring indicating a possible failure in the process of interspecies mtDNA replication.


Assuntos
Búfalos , Técnicas de Transferência Nuclear , Animais , Sequência de Bases , Bovinos , Primers do DNA , DNA Mitocondrial/genética , Zigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA