Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(31): e2201146119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878041

RESUMO

Aberrant immune responses, including hyperresponsiveness to Toll-like receptor (TLR) ligands, underlie acute respiratory distress syndrome (ARDS). Type I interferons confer antiviral activities and could also regulate the inflammatory response, whereas little is known about their actions to resolve aberrant inflammation. Here we report that interferon-ß (IFN-ß) exerts partially overlapping, but also cooperative actions with aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 to counter TLR9-generated cues to regulate neutrophil apoptosis and phagocytosis in human neutrophils. In mice, TLR9 activation impairs bacterial clearance, prolongs Escherichia coli-evoked lung injury, and suppresses production of IFN-ß and the proresolving lipid mediators 15-epi-LXA4 and resolvin D1 (RvD1) in the lung. Neutralization of endogenous IFN-ß delays pulmonary clearance of E. coli and aggravates mucosal injury. Conversely, treatment of mice with IFN-ß accelerates clearance of bacteria, restores neutrophil phagocytosis, promotes neutrophil apoptosis and efferocytosis, and accelerates resolution of airway inflammation with concomitant increases in 15-epi-LXA4 and RvD1 production in the lungs. Pharmacological blockade of the lipoxin receptor ALX/FPR2 partially prevents IFN-ß-mediated resolution. These findings point to a pivotal role of IFN-ß in orchestrating timely resolution of neutrophil and TLR9 activation-driven airway inflammation and uncover an IFN-ß-initiated resolution program, activation of an ALX/FPR2-centered, proresolving lipids-mediated circuit, for ARDS.


Assuntos
Interferon beta , Lipoxinas , Síndrome do Desconforto Respiratório , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Escherichia coli , Infecções por Escherichia coli/imunologia , Humanos , Inflamação/tratamento farmacológico , Interferon beta/imunologia , Interferon beta/farmacologia , Lipoxinas/farmacologia , Camundongos , Receptores de Formil Peptídeo/antagonistas & inibidores , Síndrome do Desconforto Respiratório/tratamento farmacológico , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Ativação Transcricional/efeitos dos fármacos
2.
Am J Physiol Cell Physiol ; 326(3): C661-C683, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189129

RESUMO

Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.


Assuntos
Inflamação , Neutrófilos , Humanos , Macrófagos , Homeostase
3.
Proc Natl Acad Sci U S A ; 117(14): 7971-7980, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205444

RESUMO

Timely resolution of bacterial infections critically depends on phagocytosis of invading pathogens by polymorphonuclear neutrophil granulocytes (PMNs), followed by PMN apoptosis and efferocytosis. Here we report that bacterial DNA (CpG DNA) and mitochondrial DNA impair phagocytosis and attenuate phagocytosis-induced apoptosis in human PMNs through Toll-like receptor 9 (TLR9)-mediated release of neutrophil elastase and proteinase 3 and subsequent down-regulation of the complement receptor C5aR. Consistently, CpG DNA delays pulmonary clearance of Escherichia coli in mice and suppresses PMN apoptosis, efferocytosis, and generation of proresolving lipid mediators, thereby prolonging lung inflammation evoked by E. coli Genetic deletion of TLR9 renders mice unresponsive to CpG DNA. We also show that aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 (17-epi-RvD1) through the receptor ALX/FPR2 antagonize cues from CpG DNA, preserve C5aR expression, restore impaired phagocytosis, and redirect human PMNs to apoptosis. Treatment of mice with 15-epi-LXA4 or 17-epi-RvD1 at the peak of inflammation accelerates clearance of bacteria, blunts PMN accumulation, and promotes PMN apoptosis and efferocytosis, thereby facilitating resolution of E. coli-evoked lung injury. Collectively, these results uncover a TLR9-mediated endogenous mechanism that impairs PMN phagocytosis and prolongs inflammation, and demonstrate both endogenous and therapeutic potential for 15-epi-LXA4 and 17-epi-RvD1 to restore impaired bacterial clearance and facilitate resolution of acute lung inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Infecções por Escherichia coli/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Pneumonia/imunologia , Receptor Toll-Like 9/metabolismo , Adulto , Idoso , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Células Cultivadas , Ilhas de CpG/imunologia , DNA Bacteriano/imunologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Escherichia coli/genética , Escherichia coli/imunologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Voluntários Saudáveis , Humanos , Lipoxinas/farmacologia , Lipoxinas/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Pneumonia/patologia , Cultura Primária de Células , Receptores de Formil Peptídeo/imunologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/imunologia , Receptores de Lipoxinas/metabolismo
4.
Diabetologia ; 64(11): 2589-2601, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34370045

RESUMO

AIMS/HYPOTHESIS: We previously reported that renal tubule-specific deletion of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) results in upregulation of renal angiotensinogen (Agt) and downregulation of sodium-glucose co-transporter 2 (Sglt2) in HnrnpfRT knockout (KO) mice. Non-diabetic HnrnpfRT KO mice develop hypertension, renal interstitial fibrosis and glycosuria with no renoprotective effect from downregulated Sglt2 expression. Here, we investigated the effect of renal tubular Hnrnpf deletion on hyperfiltration and kidney injury in Akita mice, a model of type 1 diabetes. METHODS: Akita HnrnpfRT KO mice were generated through crossbreeding tubule-specific (Pax8)-Cre mice with Akita floxed-Hnrnpf mice on a C57BL/6 background. Male non-diabetic control (Ctrl), Akita, and Akita HnrnpfRT KO mice were studied up to the age of 24 weeks (n = 8/group). RESULTS: Akita mice exhibited elevated systolic blood pressure as compared with Ctrl mice, which was significantly higher in Akita HnrnpfRT KO mice than Akita mice. Compared with Akita mice, Akita HnrnpfRT KO mice had lower blood glucose levels with increased urinary glucose excretion. Akita mice developed kidney hypertrophy, glomerular hyperfiltration (increased glomerular filtration rate), glomerulomegaly, mesangial expansion, podocyte foot process effacement, thickened glomerular basement membranes, renal interstitial fibrosis and increased albuminuria. These abnormalities were attenuated in Akita HnrnpfRT KO mice. Treatment of Akita HnrnpfRT KO mice with a selective A1 adenosine receptor inhibitor resulted in an increase in glomerular filtration rate. Renal Agt expression was elevated in Akita mice and further increased in Akita HnrnpfRT KO mice. In contrast, Sglt2 expression was increased in Akita and decreased in Akita HnrnpfRT KO mice. CONCLUSIONS/INTERPRETATION: The renoprotective effect of Sglt2 downregulation overcomes the renal injurious effect of Agt when these opposing factors coexist under diabetic conditions, at least partly via the activation of tubuloglomerular feedback.


Assuntos
Injúria Renal Aguda/prevenção & controle , Diabetes Mellitus Tipo 1/prevenção & controle , Modelos Animais de Doenças , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/fisiologia , Túbulos Renais/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Angiotensinogênio , Animais , Glicemia/metabolismo , Pressão Sanguínea , Western Blotting , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Regulação para Baixo , Taxa de Filtração Glomerular/fisiologia , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Receptores Purinérgicos P1/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Teofilina/análogos & derivados , Teofilina/farmacologia
5.
Clin Sci (Lond) ; 135(7): 943-961, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822013

RESUMO

Clinical trials indicate that sodium/glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) improve kidney function, yet, the molecular regulation of SGLT2 expression is incompletely understood. Here, we investigated the role of the intrarenal renin-angiotensin system (RAS) on SGLT2 expression. In adult non-diabetic participants in the Nephrotic Syndrome Study Network (NEPTUNE, n=163), multivariable linear regression analysis showed SGLT2 mRNA was significantly associated with angiotensinogen (AGT), renin, and angiotensin-converting enzyme (ACE) mRNA levels (P<0.001). In vitro, angiotensin II (Ang II) dose-dependently stimulated SGLT2 expression in HK-2, human immortalized renal proximal tubular cells (RPTCs); losartan and antioxidants inhibited it. Sglt2 expression was increased in transgenic (Tg) mice specifically overexpressing Agt in their RPTCs, as well as in WT mice with a single subcutaneous injection of Ang II (1.44 mg/kg). Moreover, Ang II (1000 ng/kg/min) infusion via osmotic mini-pump in WT mice for 4 weeks increased systolic blood pressure (SBP), glomerulosclerosis, tubulointerstitial fibrosis, and albuminuria; canaglifozin (Cana, 15 mg/kg/day) reversed these changes, with the exception of SBP. Fractional glucose excretion (FeGlu) was higher in Ang II+Cana than WT+Cana, whereas Sglt2 expression was similar. Our data demonstrate a link between intrarenal RAS and SGLT2 expression and that SGLT2i ameliorates Ang II-induced renal injury independent of SBP.


Assuntos
Angiotensina II/farmacologia , Nefropatias/fisiopatologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Adulto , Animais , Linhagem Celular , Feminino , Humanos , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Sistema Renina-Angiotensina/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/genética
6.
Am J Physiol Cell Physiol ; 319(3): C510-C532, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667864

RESUMO

Neutrophils are polymorphonuclear leukocytes that play a central role in host defense against infection and tissue injury. They are rapidly recruited to the inflamed site and execute a variety of functions to clear invading pathogens and damaged cells. However, many of their defense mechanisms are capable of inflicting collateral tissue damage. Neutrophil-driven inflammation is a unifying mechanism underlying many common diseases. Efficient removal of neutrophils from inflammatory loci is critical for timely resolution of inflammation and return to homeostasis. Accumulating evidence challenges the classical view that neutrophils represent a homogeneous population and that halting neutrophil influx is sufficient to explain their rapid decline within inflamed loci during the resolution of protective inflammation. Hence, understanding the mechanisms that govern neutrophil functions and their removal from the inflammatory locus is critical for minimizing damage to the surrounding tissue and for return to homeostasis. In this review, we briefly address recent advances in characterizing neutrophil phenotypic and functional heterogeneity and the molecular mechanisms that determine the fate of neutrophils within inflammatory loci and the outcome of the inflammatory response. We also discuss how these mechanisms may be harnessed as potential therapeutic targets to facilitate resolution of inflammation.


Assuntos
Apoptose/fisiologia , Homeostase/fisiologia , Inflamação/metabolismo , Neutrófilos/citologia , Animais , Fatores Celulares Derivados do Hospedeiro/metabolismo , Humanos , Fenótipo
7.
Blood ; 142(6): 505-507, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561541
8.
Blood ; 139(8): 1128-1130, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35201336
10.
Diabetologia ; 58(10): 2443-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232095

RESUMO

AIMS/HYPOTHESIS: We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-ß1 signalling, TGF-ß1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. METHODS: Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. RESULTS: Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-ß1, TGF-ß receptor II [Tgf-ßrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-ß1 and Tgf-ßrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-ß1 signalling and TGF-ß1 inhibition of Ace-2 gene expression. CONCLUSIONS/INTERPRETATION: These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-ß1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Peptidil Dipeptidase A/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Expressão Gênica/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/genética
11.
J Biol Chem ; 289(20): 14283-90, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24711458

RESUMO

The activation of endothelial cells (ECs) by monomeric C-reactive protein (mCRP) has been implicated in contributing to atherogenesis. However, the potent proinflammatory actions of mCRP on ECs in vitro appear to be incompatible with the atheroprotective effects of mCRP in a mouse model. Because mCRP is primarily generated within inflamed tissues and is rapidly cleared from the circulation, we tested whether these discrepancies can be explained by topological differences in response to mCRP within blood vessels. In a Transwell culture model, the addition of mCRP to apical (luminal), but not basolateral (abluminal), surfaces of intact human coronary artery EC monolayers evoked a significant up-regulation of MCP-1, IL-8, and IL-6. Such polarized stimulation of mCRP was observed consistently regardless of EC type or experimental conditions (e.g. culture of ECs on filters or extracellular matrix-coated surfaces). Accordingly, we detected enriched lipid raft microdomains, the major surface sensors for mCRP on ECs, in apical membranes, leading to the preferential apical binding of mCRP and activation of ECs through the polarized induction of the phospholipase C, p38 MAPK, and NF-κB signaling pathways. Furthermore, LPS and IL-1ß induction of EC activation also exhibited topological dependence, whereas TNF-α did not. Together, these results indicate that tissue-associated mCRP likely contributes little to EC activation. Hence, topological localization is an important, but often overlooked, factor that determines the contribution of mCRP and other proinflammatory mediators to chronic vascular inflammation.


Assuntos
Proteína C-Reativa/química , Proteína C-Reativa/metabolismo , Células Endoteliais/metabolismo , Circulação Sanguínea , Proteína C-Reativa/genética , Células Endoteliais/citologia , Humanos , Inflamação/patologia , Sistema de Sinalização das MAP Quinases , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Fosfolipases Tipo C/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Biol Chem ; 396(11): 1181-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26040008

RESUMO

The prototypic acute-phase reactant C-reactive protein (CRP) has long been recognized as a useful marker and gauge of inflammation. CRP also plays an important role in host defense against invading pathogens as well as in inflammation. CRP consists of five identical subunits arranged as a cyclic pentamer. CRP exists in at least two conformationally distinct forms, i.e. native pentameric CRP (pCRP) and modified/monomeric CRP (mCRP). These isoforms bind to distinct receptors and lipid rafts, and exhibit distinct functional properties. Dissociation of pCRP into its subunits occurs within the inflammatory microenvironment and newly formed mCRP may then contribute to localizing the inflammatory response. Accumulating evidence indicates that pCRP possesses both pro- and anti-inflammatory actions in a context-dependent manner, whereas mCRP exerts potent pro-inflammatory actions on endothelial cells, endothelial progenitor cells, leukocytes and platelets, and thus may amplify inflammation. Here, we review recent advances that may explain how conformational changes in CRP contribute to shaping the inflammatory response and discuss CRP isomers as potential therapeutic targets to dampen inflammation.


Assuntos
Proteína C-Reativa/química , Proteína C-Reativa/metabolismo , Inflamação/metabolismo , Animais , Humanos , Conformação Proteica
13.
Crit Care Med ; 43(6): e179-89, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855902

RESUMO

OBJECTIVE: Bacterial DNA (CpG DNA) persists in tissues and blood under pathological conditions that are associated with enhanced intravascular coagulation. Toll-like receptor 9 recognizes CpG DNA and elicits innate and adoptive immunity, yet the impact of CpG DNA on coagulation has not been studied. In this study, we investigated the effects of CpG DNA on the expression and activity of tissue factor, a key initiator of coagulation and tissue factor pathway inhibitor in human coronary artery endothelial cells and on coagulation in mice. DESIGN: Controlled in vitro and in vivo studies. SETTING: University research laboratory. SUBJECTS: Cultured human coronary artery endothelial cell, wild-type mice, and TLR9-deficient mice. INTERVENTIONS: Human coronary artery endothelial cell was challenged with CpG DNA, and tissue factor and tissue factor pathway inhibitor expression and activity were assessed. In mice, the effects of CpG DNA on bleeding time and plasma levels of thrombin-antithrombin complexes and tissue factor were measured. MEASUREMENTS AND MAIN RESULTS: We found that CpG DNA, but not eukaryotic DNA, evoked marked nuclear factor-κB-mediated increases in tissue factor expression at both messenger RNA and protein levels, as well as in tissue factor activity. Conversely, CpG DNA significantly reduced tissue factor pathway inhibitor transcription, secretion, and activity. Inhibition of Toll-like receptor 9 with a telomere-derived Toll-like receptor 9 inhibitory oligonucleotide or transient Toll-like receptor 9 knockdown with small interfering RNA attenuated human coronary artery endothelial cell responses to CpG DNA. In wild-type mice, CpG DNA shortened the bleeding time parallel with dramatic increases in plasma thrombin-antithrombin complex and tissue factor levels. Pretreatment with inhibitory oligonucleotide or anti-tissue factor antibody or genetic deletion of TLR9 prevented these changes, whereas depleting monocytes with clodronate resulted in a modest partial inhibition. CONCLUSIONS: Our findings demonstrate that bacterial DNA through Toll-like receptor 9 shifted the balance of tissue factor and tissue factor pathway inhibitor toward procoagulant phenotype in human coronary artery endothelial cells and activated blood coagulation in mice. Our study identifies Toll-like receptor 9 inhibitory oligonucleotides as potential therapeutic agents for the prevention of coagulation in pathologies where bacterial DNA may abundantly be present.


Assuntos
Coagulação Sanguínea/fisiologia , DNA Bacteriano/metabolismo , Células Endoteliais/efeitos dos fármacos , Receptor Toll-Like 9/metabolismo , Animais , Vasos Coronários/metabolismo , Expressão Gênica , Humanos , Lipoproteínas , Camundongos , NF-kappa B/metabolismo , RNA Mensageiro , RNA Interferente Pequeno , Tromboplastina , Técnicas de Cultura de Tecidos
14.
Clin Sci (Lond) ; 128(10): 649-63, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25495544

RESUMO

We investigated the relationship between Ang-(1-7) [angiotensin-(1-7)] action, sHTN (systolic hypertension), oxidative stress, kidney injury, ACE2 (angiotensin-converting enzyme-2) and MasR [Ang-(1-7) receptor] expression in Type 1 diabetic Akita mice. Ang-(1-7) was administered daily [500 µg/kg of BW (body weight) per day, subcutaneously] to male Akita mice from 14 weeks of age with or without co-administration of an antagonist of the MasR, A779 (10 mg/kg of BW per day). The animals were killed at 20 weeks of age. Age-matched WT (wild-type) mice served as controls. Ang-(1-7) administration prevented sHTN and attenuated kidney injury (reduced urinary albumin/creatinine ratio, glomerular hyperfiltration, renal hypertrophy and fibrosis, and tubular apoptosis) without affecting blood glucose levels in Akita mice. Ang-(1-7) also attenuated renal oxidative stress and the expression of oxidative stress-inducible proteins (NADPH oxidase 4, nuclear factor erythroid 2-related factor 2, haem oxygenase 1), pro-hypertensive proteins (angiotensinogen, angiotensin-converting enzyme, sodium/hydrogen exchanger 3) and profibrotic proteins (transforming growth factor-ß1 and collagen IV), and increased the expression of anti-hypertensive proteins (ACE2 and MasR) in Akita mouse kidneys. These effects were reversed by A779. Our data suggest that Ang-(1-7) plays a protective role in sHTN and RPTC (renal proximal tubular cell) injury in diabetes, at least in part, through decreasing renal oxidative stress-mediated signalling and normalizing ACE2 and MasR expression.


Assuntos
Angiotensina I/farmacologia , Diabetes Mellitus Tipo 1/complicações , Fibrose/prevenção & controle , Hipertensão/prevenção & controle , Nefropatias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Análise de Variância , Angiotensina I/administração & dosagem , Angiotensina I/uso terapêutico , Angiotensina I/urina , Angiotensina II/análogos & derivados , Enzima de Conversão de Angiotensina 2 , Animais , Glicemia , Western Blotting , Fibrose/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas Histológicas , Hipertensão/etiologia , Imuno-Histoquímica , Injeções Subcutâneas , Nefropatias/etiologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/uso terapêutico , Fragmentos de Peptídeos/urina , Peptidil Dipeptidase A/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(37): 14983-8, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22927428

RESUMO

Inappropriate neutrophil activation contributes to the pathogenesis of acute lung injury (ALI). Apoptosis is essential for removal of neutrophils from inflamed tissues and timely resolution of inflammation. Resolvin E1 (RvE1) is an endogenous lipid mediator derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid that displays proresolving actions. Because the balance of prosurvival and proapoptosis signals determines the fate of neutrophils, we investigated the impact of RvE1 on neutrophil apoptosis and the outcome of neutrophil-mediated pulmonary inflammation in mice. Culture of human neutrophils with RvE1 accelerated apoptosis evoked by phagocytosis of opsonized Escherichia coli or yeast. RvE1 through the leukotriene B(4) receptor BLT1 enhanced NADPH oxidase-derived reactive oxygen species generation and subsequent activation of caspase-8 and caspase-3. RvE1 also attenuated ERK and Akt-mediated apoptosis-suppressing signals from myeloperoxidase, serum amyloid A, and bacterial DNA, shifting the balance of pro- and anti-survival signals toward apoptosis via induction of mitochondrial dysfunction. In mice, RvE1 treatment enhanced the resolution of established neutrophil-mediated pulmonary injury evoked by intratracheal instillation or i.p. administration of live E. coli or intratracheal instillation of carrageenan plus myeloperoxidase via facilitating neutrophil apoptosis and their removal by macrophages. The actions of RvE1 were prevented by the pan-caspase inhibitor zVAD-fmk. These results identify a mechanism, promotion of phagocytosis-induced neutrophil apoptosis and mitigation of potent anti-apoptosis signals, by which RvE1 could enhance resolution of acute lung inflammation.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Eicosapentaenoico/análogos & derivados , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Clorometilcetonas de Aminoácidos , Análise de Variância , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Células Cultivadas , Ácido Eicosapentaenoico/antagonistas & inibidores , Ácido Eicosapentaenoico/farmacologia , Escherichia coli , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores do Leucotrieno B4/metabolismo , Estatísticas não Paramétricas , Leveduras
16.
Am J Physiol Renal Physiol ; 304(11): F1335-46, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23552863

RESUMO

We investigated the relationship among oxidative stress, hypertension, renal injury, and angiotensin-converting enzyme-2 (ACE2) expression in type 1 diabetic Akita mice. Blood glucose, blood pressure, and albuminuria were monitored for up to 5 mo in adult male Akita and Akita catalase (Cat) transgenic (Tg) mice specifically overexpressing Cat, a key antioxidant enzyme in their renal proximal tubular cells (RPTCs). Same-age non-Akita littermates and Cat-Tg mice served as controls. In separate studies, adult male Akita mice (14 wk) were treated with ANG 1-7 (500 µg·kg⁻¹·day⁻¹ sc) ± A-779, an antagonist of the Mas receptor (10 mg·kg⁻¹·day⁻¹ sc), and euthanized at the age of 18 wk. The left kidneys were processed for histology and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess protein and gene expression. Urinary angiotensinogen (AGT), angiotensin II (ANG II), and ANG 1-7 were quantified by specific ELISAs. Overexpression of Cat attenuated renal oxidative stress; prevented hypertension; normalized RPTC ACE2 expression and urinary ANG 1-7 levels (both were low in Akita mice); ameliorated glomerular filtration rate, albuminuria, kidney hypertrophy, tubulointerstitial fibrosis, and tubular apoptosis; and suppressed profibrotic and proapoptotic gene expression in RPTCs of Akita Cat-Tg mice compared with Akita mice. Furthermore, daily administration of ANG 1-7 normalized systemic hypertension in Akita mice, which was reversed by A-779. These data demonstrate that Cat overexpression prevents hypertension and progression of nephropathy and highlight the importance of intrarenal oxidative stress and ACE2 expression contributing to hypertension and renal injury in diabetes.


Assuntos
Catalase/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Hipertensão/prevenção & controle , Túbulos Renais/patologia , Estresse Oxidativo , Peptidil Dipeptidase A/metabolismo , Albuminúria , Angiotensina I/administração & dosagem , Angiotensina I/urina , Enzima de Conversão de Angiotensina 2 , Angiotensinogênio/urina , Animais , Apoptose , Catalase/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/patologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/prevenção & controle , Fibrose , Hipertensão/etiologia , Rim/patologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/urina
17.
EMBO Mol Med ; 15(1): e17003, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36465053

RESUMO

C-reactive protein (CRP) is a marker of acute inflammation and modulator of host defense against infections. CRP exists in conformationally distinct forms that exhibit opposing biological functions and could amplify tissue damage. Therefore, therapies that efficiently target the deleterious actions of CRP are needed. In this issue of EMBO Molecular Medicine, Zeller et al report development of a novel low molecular weight phosphocholine-mimetic that binds to pCRP and inhibits conformation change-mediated expression of pro-inflammatory actions without impairing its defense function and demonstrate its beneficial actions in preventing rejection of allograft transplants and renal ischemia-reperfusion injury.


Assuntos
Proteína C-Reativa , Inflamação , Humanos , Inflamação/metabolismo , Rim/metabolismo
18.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259922

RESUMO

Endothelial cells form a constitutively anticoagulant surface under homeostasis. While loss of this anticoagulant property is a hallmark of many cardiovascular diseases, the molecular mechanisms underlying the procoagulant transition remain incompletely understood. In this issue of the JCI, Schmaier et al. identify the phospholipid scramblases TMEM16E and TMEM16F, which support endothelial procoagulant activity through phosphatidylserine (PS) externalization. Genetic deletion of TMEM16E or TMEM16F or treatment with TMEM16 inhibitors prevented PS externalization and reduced fibrin formation in the vessel wall independently of platelets in a murine laser-injury model of thrombosis. These findings reveal a role for endothelial TMEM16E in thrombosis and identify TMEM16E as a potential therapeutic target for preventing thrombus formation.


Assuntos
Células Endoteliais , Trombose , Camundongos , Animais , Células Endoteliais/metabolismo , Coagulação Sanguínea/genética , Plaquetas/metabolismo , Trombose/genética , Trombose/metabolismo , Anticoagulantes , Fosfatidilserinas
19.
Front Immunol ; 14: 1237729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564640

RESUMO

C-reactive protein (CRP) is well-recognized as a sensitive biomarker of inflammation. Association of elevations in plasma/serum CRP level with disease state has received considerable attention, even though CRP is not a specific indicator of a single disease state. Circulating CRP levels have been monitored with a varying degree of success to gauge disease severity or to predict disease progression and outcome. Elevations in CRP level have been implicated as a useful marker to identify patients at risk for cardiovascular disease and certain cancers, and to guide therapy in a context-dependent manner. Since even strong associations do not establish causality, the pathogenic role of CRP has often been over-interpreted. CRP functions as an important modulator of host defense against bacterial infection, tissue injury and autoimmunity. CRP exists in conformationally distinct forms, which exhibit distinct functional properties and help explaining the diverse, often contradictory effects attributed to CRP. In particular, dissociation of native pentameric CRP into its subunits, monomeric CRP, unmasks "hidden" pro-inflammatory activities in pentameric CRP. Here, we review recent advances in CRP targeting strategies, therapeutic lowering of circulating CRP level and development of CRP antagonists, and a conformation change inhibitor in particular. We will also discuss their therapeutic potential in mitigating the deleterious actions attributed to CRP under various pathologies, including cardiovascular, pulmonary and autoimmune diseases and cancer.


Assuntos
Proteína C-Reativa , Doenças Cardiovasculares , Humanos , Proteína C-Reativa/metabolismo , Inflamação/metabolismo , Biomarcadores , Doenças Cardiovasculares/tratamento farmacológico , Progressão da Doença
20.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37760019

RESUMO

The role(s) of nuclear factor erythroid 2-related factor 2 (NRF2) in diabetic kidney disease (DKD) is/are controversial. We hypothesized that Nrf2 deficiency in type 2 diabetes (T2D) db/db mice (db/dbNrf2 knockout (KO)) attenuates DKD progression through the down-regulation of angiotensinogen (AGT), sodium-glucose cotransporter-2 (SGLT2), scavenger receptor CD36, and fatty -acid-binding protein 4 (FABP4), and lipid accumulation in renal proximal tubular cells (RPTCs). Db/dbNrf2 KO mice were studied at 16 weeks of age. Human RPTCs (HK2) with NRF2 KO via CRISPR-Cas9 genome editing and kidneys from patients with or without T2D were examined. Compared with db/db mice, db/dbNrf2 KO mice had lower systolic blood pressure, fasting blood glucose, kidney hypertrophy, glomerular filtration rate, urinary albumin/creatinine ratio, tubular lipid droplet accumulation, and decreased expression of AGT, SGLT2, CD36, and FABP4 in RPTCs. Male and female mice had similar results. NRF2 KO attenuated the stimulatory effect of the Nrf2 activator, oltipraz, on AGT, SGLT2, and CD36 expression and high-glucose/free fatty acid (FFA)-stimulated lipid accumulation in HK2. Kidneys from T2D patients exhibited markedly higher levels of CD36 and FABP4 in RPTCs than kidneys from non-diabetic patients. These data suggest that NRF2 exacerbates DKD through the stimulation of AGT, SGLT2, CD36, and FABP4 expression and lipid accumulation in RPTCs of T2D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA