Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 40(1): 145-158, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747801

RESUMO

OBJECTIVE: Cardiovascular outcome trials demonstrated that GLP-1 (glucagon-like peptide-1) analogs including liraglutide reduce the risk of cardiovascular events in type 2 diabetes mellitus. Whether GLP-1 analogs reduce the risk for atherosclerosis independent of glycemic control is challenging to elucidate as the GLP-1R (GLP-1 receptor) is expressed on different cell types, including endothelial and immune cells. Approach and Results: Here, we reveal the cardio- and vasoprotective mechanism of the GLP-1 analog liraglutide at the cellular level in a murine, nondiabetic model of arterial hypertension. Wild-type (C57BL/6J), global (Glp1r-/-), as well as endothelial (Glp1rflox/floxxCdh5cre) and myeloid cell-specific knockout mice (Glp1rflox/floxxLysMcre) of the GLP-1R were studied, and arterial hypertension was induced by angiotensin II. Liraglutide treatment normalized blood pressure, cardiac hypertrophy, vascular fibrosis, endothelial dysfunction, oxidative stress, and vascular inflammation in a GLP-1R-dependent manner. Mechanistically, liraglutide reduced leukocyte rolling on the endothelium and infiltration of myeloid Ly6G-Ly6C+ and Ly6G+Ly6C+ cells into the vascular wall. As a consequence, liraglutide prevented vascular oxidative stress, reduced S-glutathionylation as a marker of eNOS (endothelial NO synthase) uncoupling, and increased NO bioavailability. Importantly, all of these beneficial cardiovascular effects of liraglutide persisted in myeloid cell GLP-1R-deficient (Glp1rflox/floxxLysMcre) mice but were abolished in global (Glp1r-/-) and endothelial cell-specific (Glp1rflox/floxxCdh5cre) GLP-1R knockout mice. CONCLUSIONS: GLP-1R activation attenuates cardiovascular complications of arterial hypertension by reduction of vascular inflammation through selective actions requiring the endothelial but not the myeloid cell GLP-1R.


Assuntos
Aterosclerose/genética , Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Hipertensão/genética , Liraglutida/farmacologia , RNA/genética , Animais , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Receptor do Peptídeo Semelhante ao Glucagon 1/biossíntese , Hipertensão/complicações , Hipertensão/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Eur Heart J ; 41(26): 2472-2483, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-31715629

RESUMO

AIMS: Electronic (e)-cigarettes have been marketed as a 'healthy' alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. METHODS AND RESULTS: Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. CONCLUSIONS: E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


Assuntos
Encéfalo , Vapor do Cigarro Eletrônico/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , NADPH Oxidase 2/genética , Estresse Oxidativo , Animais , Encéfalo/metabolismo , Camundongos
3.
Eur Heart J ; 39(38): 3528-3539, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29905797

RESUMO

Aims: Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results: C57BL/6j and Nox2-/- (gp91phox-/-) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effects of around-the-clock noise on the vasculature and brain were mostly prevented by Nox2 deficiency. Around-the-clock aircraft noise of the mice caused the most pronounced vascular effects and dysregulation of Foxo3/circadian clock as revealed by next generation sequencing (NGS), suggesting impaired sleep quality in exposed mice. Accordingly, sleep but not awake phase noise caused increased blood pressure, endothelial dysfunction, increased markers of vascular/systemic oxidative stress, and inflammation. Noise also caused cerebral oxidative stress and inflammation, endothelial and neuronal nitric oxide synthase (e/nNOS) uncoupling, nNOS mRNA and protein down-regulation, and Nox2 activation. NGS revealed similarities in adverse gene regulation between around-the-clock and sleep phase noise. In patients with established coronary artery disease, night-time aircraft noise increased oxidative stress, and inflammation biomarkers in serum. Conclusion: Aircraft noise increases vascular and cerebral oxidative stress via Nox2. Sleep deprivation and/or fragmentation caused by noise triggers vascular dysfunction. Thus, preventive measures that reduce night-time aircraft noise are warranted.


Assuntos
Aeronaves , Encéfalo/fisiopatologia , Endotélio Vascular/fisiopatologia , NADPH Oxidase 2/fisiologia , Ruído dos Transportes/efeitos adversos , Privação do Sono/fisiopatologia , Animais , Relógios Circadianos/fisiologia , GMP Cíclico/metabolismo , Regulação da Expressão Gênica , Hemodinâmica/fisiologia , Humanos , Inflamação/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Transdução de Sinais
4.
Antioxidants (Basel) ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439423

RESUMO

Sepsis causes high mortality in the setting of septic shock. LEADER and other trials revealed cardioprotective and anti-inflammatory properties of glucagon-like peptide-1 (GLP-1) analogs like liraglutide (Lira). We previously demonstrated improved survival in lipopolysaccharide (LPS)-induced endotoxemia by inhibition of GLP-1 degradation. Here we investigate the effects of Lira in the polymicrobial sepsis model of cecal ligation and puncture (CLP). C57BL/6J mice were intraperitoneally injected with Lira (200 µg/kg/d; 3 days) and sepsis induced by CLP after one day of GLP-1 analog treatment. Survival and body temperature were monitored. Aortic vascular function (isometric tension recording), protein expression (immunohistochemistry and dot blot) and gene expression (qRT-PCR) were determined. Endothelium-dependent relaxation in the aorta was impaired by CLP and correlated with markers of inflammation (e.g., interleukin 6 and inducible nitric oxide synthase) and oxidative stress (e.g., 3-nitrotyrosine) was higher in septic mice, all of which was almost completely normalized by Lira therapy. We demonstrate that the GLP-1 analog Lira ameliorates sepsis-induced endothelial dysfunction by the reduction of vascular inflammation and oxidative stress. Accordingly, the findings suggest that the antioxidant and anti-inflammatory effects of GLP-1 analogs may be a valuable tool to protect the cardiovascular system from dysbalanced inflammation in polymicrobial sepsis.

5.
Free Radic Res ; 54(4): 280-292, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32326776

RESUMO

Background: Large epidemiological studies point towards a link between the incidence of arterial hypertension, ischaemic heart disease, metabolic disease and exposure to traffic noise, supporting the role of noise exposure as an independent cardiovascular risk factor. We characterised the underlying molecular mechanisms leading to noise-dependent adverse effects on the vasculature and myocardium in an animal model of aircraft noise exposure and identified oxidative stress and inflammation as central players in mediating vascular and cardiac dysfunction. Here, we studied the impact of noise-induced oxidative DNA damage on vascular function in DNA-repair deficient 8-oxoguanine glycosylase knockout (Ogg1-/-) mice.Methods and results: Noise exposure (peak sound levels of 85 and mean sound level of 72 dB(A) applied for 4d) caused oxidative DNA damage (8-oxoguanine) and enhanced NOX-2 expression in C57BL/6 mice with synergistic increases in Ogg1-/- mice (shown by immunohistochemistry). A similar pattern was found for oxidative burst of blood leukocytes and other markers of oxidative stress (4-hydroxynonenal, 3-nitrotyrosine) and inflammation (cyclooxygenase-2). We observed additive impairment of noise exposure and genetic Ogg1 deficiency on endothelium-independent relaxation (nitroglycerine), which may be due to exacerbated oxidative DNA damage leading to leukocyte activation and oxidative aldehyde dehydrogenase inhibition.Conclusions: The finding that chronic noise exposure causes oxidative DNA damage in mice is worrisome since these potential mutagenic lesions could contribute to cancer progression. Human field studies have to demonstrate whether oxidative DNA damage is also found in urban populations with high levels of noise exposure as recently shown for workers with high occupational noise exposure.


Assuntos
Aeronaves , Dano ao DNA , DNA Glicosilases/deficiência , Exposição Ambiental/efeitos adversos , Nitratos/metabolismo , Ruído/efeitos adversos , Explosão Respiratória/fisiologia , Animais , DNA Glicosilases/genética , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia
6.
Redox Biol ; 34: 101515, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345536

RESUMO

Arterial hypertension is the most important risk factor for the development of cardiovascular disease. Recently, aircraft noise has been shown to be associated with elevated blood pressure, endothelial dysfunction, and oxidative stress. Here, we investigated the potential exacerbated cardiovascular effects of aircraft noise in combination with experimental arterial hypertension. C57BL/6J mice were infused with 0.5 mg/kg/d of angiotensin II for 7 days, exposed to aircraft noise for 7 days at a maximum sound pressure level of 85 dB(A) and a mean sound pressure level of 72 dB(A), or subjected to both stressors. Noise and angiotensin II increased blood pressure, endothelial dysfunction, oxidative stress and inflammation in aortic, cardiac and/or cerebral tissues in single exposure models. In mice subjected to both stressors, most of these risk factors showed potentiated adverse changes. We also found that mice exposed to both noise and ATII had increased phagocytic NADPH oxidase (NOX-2)-mediated superoxide formation, immune cell infiltration (monocytes, neutrophils and T cells) in the aortic wall, astrocyte activation in the brain, enhanced cytokine signaling, and subsequent vascular and cerebral oxidative stress. Exaggerated renal stress response was also observed. In summary, our results show an enhanced adverse cardiovascular effect between environmental noise exposure and arterial hypertension, which is mainly triggered by vascular inflammation and oxidative stress. Mechanistically, noise potentiates neuroinflammation and cerebral oxidative stress, which may be a potential link between both risk factors. The results indicate that a combination of classical (arterial hypertension) and novel (noise exposure) risk factors may be deleterious for cardiovascular health.


Assuntos
Endotélio Vascular , Hipertensão , Aeronaves , Animais , Pressão Sanguínea , Endotélio Vascular/metabolismo , Hipertensão/etiologia , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
7.
Nutrients ; 11(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810254

RESUMO

Food insecurity has risen by 40% in Europe's post-economic crisis, linked to the economic turmoil and austerity. Despite the intensification of efforts to fight all forms of poverty, including the implementation of programs targeted to the most deprived, the study of individuals at risk of food insecurity has been largely neglected. This study aimed to map the nutritional habits and needs of the most deprived in Greece, one of the countries most affected by the economic crisis. Individuals classified as most deprived under the Fund for the European Aid to the Most Deprived (FEAD) criteria (n = 499) from across Greece and an age matched control from the general population (n = 500) were interviewed between December 2017 and December 2019. Participants provided information about demographic characteristics, and self-reported anthropometric measures and nutritional intake of the past month via a food frequency questionnaire (FFQ). Protein and energy malnutrition were defined as daily intake <1.950 kcal and ≤0.75 g/kg body-weight accordingly. Protein and energy malnutrition were high among FEAD recipients (52.3% and 18.6% respectively, p < 0.001), alongside a high prevalence of overweight and obesity (BMI > 25: 68.4% versus 55.1%; p < 0.001). The diet of FEAD recipients included higher amounts of carbohydrates, lower amounts of monounsaturated fat (MUFA) and polyunsaturated fat (PUFA; p < 0.001 compared to control), larger amounts of plant-based proteins (5.81 ± 1.7 versus 4.94 ± 1.3% E respectively, p < 0.001) and very limited intake of fish (0.07 portions/day). Despite being enrolled in a food assistance program, protein and energy malnutrition is prevalent among Greece's most deprived who experience not only lower diet quality but also the double burden of malnutrition.


Assuntos
Recessão Econômica/estatística & dados numéricos , Abastecimento de Alimentos/economia , Estado Nutricional , Pobreza/estatística & dados numéricos , Desnutrição Proteico-Calórica/epidemiologia , Adulto , Estudos Transversais , Dieta/estatística & dados numéricos , Inquéritos sobre Dietas , Feminino , Assistência Alimentar/estatística & dados numéricos , Grécia/epidemiologia , Disparidades nos Níveis de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação Nutricional , Prevalência , Desnutrição Proteico-Calórica/economia , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA