Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Atherosclerosis ; 390: 117462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325120

RESUMO

The decreasing costs of high-throughput genetic sequencing and increasing abundance of sequenced genome data have paved the way for the use of genetic data in identifying and validating potential drug targets. However, the number of identified potential drug targets is often prohibitively large to experimentally evaluate in wet lab experiments, highlighting the need for systematic approaches for target prioritisation. In this review, we discuss principles of genetically guided drug development, specifically addressing loss-of-function analysis, colocalization and Mendelian randomisation (MR), and the contexts in which each may be most suitable. We subsequently present a range of biomedical resources which can be used to annotate and prioritise disease-associated proteins identified by these studies including 1) ontologies to map genes, proteins, and disease, 2) resources for determining the druggability of a potential target, 3) tissue and cell expression of the gene encoding the potential target, and 4) key biological pathways involving the potential target. We illustrate these concepts through a worked example, identifying a prioritised set of plasma proteins associated with non-alcoholic fatty liver disease (NAFLD). We identified five proteins with strong genetic support for involvement with NAFLD: CYB5A, NT5C, NCAN, TGFBI and DAPK2. All of the identified proteins were expressed in both liver and adipose tissues, with TGFBI and DAPK2 being potentially druggable. In conclusion, the current review provides an overview of genetic evidence for drug target identification, and how biomedical databases can be used to provide actionable prioritisation, fully informing downstream experimental validation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas/genética , Estudo de Associação Genômica Ampla
2.
EBioMedicine ; 105: 105194, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38941956

RESUMO

BACKGROUND: Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development. METHODS: Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF. FINDINGS: 613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development. INTERPRETATION: Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF. FUNDING: KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.


Assuntos
Fibrilação Atrial , Desenvolvimento de Medicamentos , Fibrilação Atrial/genética , Fibrilação Atrial/tratamento farmacológico , Humanos , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Reposicionamento de Medicamentos/métodos , Descoberta de Drogas , Antiarrítmicos/uso terapêutico , Antiarrítmicos/farmacologia
3.
Nat Commun ; 15(1): 5302, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906890

RESUMO

CETP inhibitors are a class of lipid-lowering drugs in development for treatment of coronary heart disease (CHD). Genetic studies in East Asian ancestry have interpreted the lack of CETP signal with low-density lipoprotein cholesterol (LDL-C) and lack of drug target Mendelian randomization (MR) effect on CHD as evidence that CETP inhibitors might not be effective in East Asian participants. Capitalizing on recent increases in sample size of East Asian genetic studies, we conducted a drug target MR analysis, scaled to a standard deviation increase in high-density lipoprotein cholesterol. Despite finding evidence for possible neutral effects of lower CETP levels on LDL-C, systolic blood pressure and pulse pressure in East Asians (interaction p-values < 1.6 × 10-3), effects on cardiovascular outcomes were similarly protective in both ancestry groups. In conclusion, on-target inhibition of CETP is anticipated to decrease cardiovascular disease in individuals of both European and East Asian ancestries.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , LDL-Colesterol , Análise da Randomização Mendeliana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticolesterolemiantes/uso terapêutico , Pressão Sanguínea/genética , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Doença das Coronárias/genética , Doença das Coronárias/sangue , População do Leste Asiático/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética
4.
Open Biol ; 14(7): 230419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013416

RESUMO

The mechanisms responsible for neuronal death causing cognitive loss in Alzheimer's disease (AD) and many other dementias are not known. Serum amyloid P component (SAP) is a constitutive plasma protein, which is cytotoxic for cerebral neurones and also promotes formation and persistence of cerebral Aß amyloid and neurofibrillary tangles. Circulating SAP, which is produced exclusively by the liver, is normally almost completely excluded from the brain. Conditions increasing brain exposure to SAP increase dementia risk, consistent with a causative role in neurodegeneration. Furthermore, neocortex content of SAP is strongly and independently associated with dementia at death. Here, seeking genomic evidence for a causal link of SAP with neurodegeneration, we meta-analysed three genome-wide association studies of 44 288 participants, then conducted cis-Mendelian randomization assessment of associations with neurodegenerative diseases. Higher genetically instrumented plasma SAP concentrations were associated with AD (odds ratio 1.07, 95% confidence interval (CI) 1.02; 1.11, p = 1.8 × 10-3), Lewy body dementia (odds ratio 1.37, 95%CI 1.19; 1.59, p = 1.5 × 10-5) and plasma tau concentration (0.06 log2(ng l-1) 95%CI 0.03; 0.08, p = 4.55 × 10-6). These genetic findings are consistent with neuropathogenicity of SAP. Depletion of SAP from the blood and the brain, by the safe, well tolerated, experimental drug miridesap may thus be neuroprotective.


Assuntos
Estudo de Associação Genômica Ampla , Doenças Neurodegenerativas , Componente Amiloide P Sérico , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Análise da Randomização Mendeliana , Biomarcadores , Proteínas tau/metabolismo , Proteínas tau/genética , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Masculino , Feminino
5.
JACC Adv ; 2(4): 100333, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938233

RESUMO

Background: People with monogenic familial hypercholesterolemia (FH) are at an increased risk of premature coronary heart disease and death. With a prevalence of 1:250, FH is relatively common; but currently there is no population screening strategy in place and most carriers are identified late in life, delaying timely and cost-effective interventions. Objectives: The purpose of this study was to derive an algorithm to identify people with suspected monogenic FH for subsequent confirmatory genomic testing and cascade screening. Methods: A least absolute shrinkage and selection operator logistic regression model was used to identify predictors that accurately identified people with FH in 139,779 unrelated participants of the UK Biobank. Candidate predictors included information on medical and family history, anthropometric measures, blood biomarkers, and a low-density lipoprotein cholesterol (LDL-C) polygenic score (PGS). Model derivation and evaluation were performed in independent training and testing data. Results: A total of 488 FH variant carriers were identified using whole-exome sequencing of the low-density lipoprotein receptor, apolipoprotein B, apolipoprotein E, proprotein convertase subtilisin/kexin type 9 genes. A 14-variable algorithm for FH was derived, with an area under the curve of 0.77 (95% CI: 0.71-0.83), where the top 5 most important variables included triglyceride, LDL-C, apolipoprotein A1 concentrations, self-reported statin use, and LDL-C PGS. Excluding the PGS as a candidate feature resulted in a 9-variable model with a comparable area under the curve: 0.76 (95% CI: 0.71-0.82). Both multivariable models (w/wo the PGS) outperformed screening-prioritization based on LDL-C adjusted for statin use. Conclusions: Detecting individuals with FH can be improved by considering additional predictors. This would reduce the sequencing burden in a 2-stage population screening strategy for FH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA