Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 35(13): 1400-16, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234298

RESUMO

Skp1-Cul1-F-box protein (SCF) ubiquitin ligases direct cell survival decisions by controlling protein ubiquitylation and degradation. Sufu (Suppressor of fused) is a central regulator of Hh (Hedgehog) signaling and acts as a tumor suppressor by maintaining the Gli (Glioma-associated oncogene homolog) transcription factors inactive. Although Sufu has a pivotal role in Hh signaling, the players involved in controlling Sufu levels and their role in tumor growth are unknown. Here, we show that Fbxl17 (F-box and leucine-rich repeat protein 17) targets Sufu for proteolysis in the nucleus. The ubiquitylation of Sufu, mediated by Fbxl17, allows the release of Gli1 from Sufu for proper Hh signal transduction. Depletion of Fbxl17 leads to defective Hh signaling associated with an impaired cancer cell proliferation and medulloblastoma tumor growth. Furthermore, we identify a mutation in Sufu, occurring in medulloblastoma of patients with Gorlin syndrome, which increases Sufu turnover through Fbxl17-mediated polyubiquitylation and leads to a sustained Hh signaling activation. In summary, our findings reveal Fbxl17 as a novel regulator of Hh pathway and highlight the perturbation of the Fbxl17-Sufu axis in the pathogenesis of medulloblastoma.


Assuntos
Proteínas F-Box/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/patologia , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Camundongos , Ratos , Transdução de Sinais , Ubiquitinação
2.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2563-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311597

RESUMO

Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU-GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU-GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.


Assuntos
Ouriços/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Mapas de Interação de Proteínas , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco
3.
Biochem J ; 394(Pt 1): 19-26, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16229683

RESUMO

Patched1 (PTCH1) is a human tumour suppressor that acts as an HH (Hedgehog) receptor protein and is important for embryonic patterning. PTCH1 mediates its effects through SMO (Smoothened) and represses the expression of HH target genes such as the transcription factor GLI1 (glioma 1) as well as PTCH1. Up-regulation of these genes has been observed in several cancer forms, including basal cell carcinoma, digestive track tumours and small cell lung cancer. The fact that PTCH1 down-regulates its own expression via 'negative feedback' is an important feature in HH signalling, as it keeps the balance between HH and PTCH1 activities that are essential for normal development. In the present study, we provide evidence that a novel mechanism allowing PTCH1 to maintain this balance may also exist. We show that gene activation by GLI1, the transcriptional effector of the pathway, can be down-regulated by PTCH1 without involvement of the canonical cascade of HH signalling events. Specifically, the SMO antagonist cyclopamine has no appreciable effects in blocking this PTCH1-mediated inhibition. Moreover, the negative GLI1 regulator SUFU (Suppressor of Fused) was also found to be dispensable. Additionally, deletion mapping of PTCH1 has revealed that the domains encompassed by amino acids 180-786 and 1058-1210 are of highest significance in inhibiting GLI1 gene activation. This contrasts with the importance of the PTCH1 C-terminal domain for HH signalling.


Assuntos
Proteínas Oncogênicas/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Animais , Apoptose , Células COS , Diferenciação Celular , Linhagem Celular , Chlorocebus aethiops , Deleção de Genes , Humanos , Camundongos , Células NIH 3T3 , Proteínas Oncogênicas/metabolismo , Receptores Patched , Receptor Patched-1 , Estrutura Terciária de Proteína , Transporte Proteico , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Proteínas Repressoras , Transativadores , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco
4.
PLoS One ; 7(5): e37761, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666390

RESUMO

The Suppressor of Fused (SUFU) protein plays an essential role in the Hedgehog (HH) signaling pathway, by regulation of the GLI transcription factors. Two major isoforms of human SUFU are known, a full-length (SUFU-FL) and a carboxy-terminal truncated (SUFU- ΔC) variant. Even though SUFU- ΔC is expressed at an equivalent level as SUFU-FL in certain tissues, the function of SUFU-ΔC and its impact on HH signal transduction is still unclear. In two cell lines from rhabdomyosarcoma, a tumor type associated with deregulated HH signaling, SUFU-ΔC mRNA was expressed at comparable levels as SUFU-FL mRNA, but at the protein level only low amounts of SUFU-ΔC were detectable. Heterologous expression provided support to the notion that the SUFU-ΔC protein is less stable compared to SUFU-FL. Despite this, biochemical analysis revealed that SUFU-ΔC could repress GLI2 and GLI1ΔN, but not GLI1FL, transcriptional activity to the same extent as SUFU-FL. Moreover, under conditions of activated HH signaling SUFU-ΔC was more effective than SUFU-FL in inhibiting GLI1ΔN. Importantly, co-expression with GLI1FL indicated that SUFU-ΔC but not SUFU-FL reduced the protein levels of GLI1FL. Additionally, confocal microscopy revealed a co-localization of GLI1FL with SUFU-ΔC but not SUFU-FL in aggregate structures. Moreover, specific siRNA mediated knock-down of SUFU-ΔC resulted in up-regulation of the protein levels of GLI1FL and the HH signaling target genes PTCH1 and HHIP. Our results are therefore suggesting the presence of novel regulatory controls in the HH signaling pathway, which are elicited by the distinct mechanism of action of the two alternative spliced SUFU proteins.


Assuntos
Proteínas Hedgehog/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Espaço Intracelular/metabolismo , Camundongos , Mutação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transativadores/genética , Transativadores/metabolismo , Regulação para Cima , Proteína GLI1 em Dedos de Zinco
5.
J Cell Commun Signal ; 1(3-4): 165-73, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18600476

RESUMO

The segment polarity gene Fused (Fu) encodes a putative serine-threonine kinase Fu, which has been shown to play a key role in the Hedgehog signaling pathway of Drosophila. Human FU (hFU) has been shown to enhance the activity of Gli transcription factors, targets of the signaling pathway. However, Fu ( -/- ) mice do not show aberrant embryonic development indicating that mouse Fu (mFu) is dispensable for Hedgehog signaling until birth. In order to investigate if there are important differences between hFU and mFu, we cloned the cDNA, analyzed expression and tested the ability of mFu to regulate Gli proteins. Of the tested tissues only brain and testis showed significant expression. However, in transient overexpression analyses mFu was able to enhance Gli induced transcription in a manner similar to hFU. Thus, we turned to RNAi in order to test if mFu would be important for Hedgehog signaling after all. In one cell line with reduced mFu expression the Hedgehog signaling was severely hampered, indicating that mFu may have a role in Hedgehog signaling and Gli regulation in some cellular situations.

6.
J Biol Chem ; 277(8): 5882-90, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11726664

RESUMO

Accumulated recent evidence is indicating that alternative splicing represents a generalized process that increases the complexity of human gene expression. Here we show that mRNA production may not necessarily be limited to single genes, as human liver also has the potential to produce a variety of hybrid cytochrome P450 3A mRNA molecules. The four known cytochrome P450 3A genes in humans, CYP3A4, CYP3A5, CYP3A7, and CYP3A43, share a high degree of similarity, consist of 13 exons with conserved exon-intron boundaries, and form a cluster on chromosome 7. The chimeric CYP3A mRNA molecules described herein are characterized by CYP3A43 exon 1 joined at canonical splice sites to distinct sets of CYP3A4 or CYP3A5 exons. Because the CYP3A43 gene is in a head-to-head orientation with the CYP3A4 and CYP3A5 genes, bypassing transcriptional termination can not account for the formation of hybrid CYP3A mRNAs. Thus, the mechanism generating these molecules has to be an RNA processing event that joins exons of independent pre-mRNA molecules, i.e. trans-splicing. Using quantitative real-time polymerase chain reaction, the ratio of one CYP3A43/3A4 intergenic combination was estimated to be approximately 0.15% that of the CYP3A43 mRNAs. Moreover, trans-splicing has been found not to interfere with polyadenylation. Heterologous expression of the chimeric species composed of CYP3A43 exon 1 joined to exons 2-13 of CYP3A4 revealed catalytic activity toward testosterone.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Sistema Enzimático do Citocromo P-450/genética , Íntrons , Oxirredutases N-Desmetilantes/genética , RNA Mensageiro/genética , Trans-Splicing/genética , Sequência de Bases , Southern Blotting , Carcinoma Hepatocelular , Citocromo P-450 CYP3A , Primers do DNA , Éxons , Genes , Humanos , Isoenzimas/genética , Fígado , Neoplasias Hepáticas , Reação em Cadeia da Polimerase , Pseudogenes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA