RESUMO
Metastasis is one of the major obstacles for breast cancer patients. Limitations of current models demand the development of custom platforms to predict metastatic potential and homing choices of cancer cells. Here, two organ-on-chip platforms, invasion/chemotaxis (IC-chip) and extravasation (EX-chip) were used for the quantitative assessment of invasion and extravasation towards specific tissues. Lung, liver and breast microenvironments were simulated in the chips using tissue-specific cells embedded in matrigel. In the IC-chip, invasive MDA-MB-231, but not noninvasive MCF-7 breast cancer cells invaded into lung and liver microenvironments. In the EX-chip, MDA-MB-231 cells extravasated more into the lung compared to the liver and breast microenvironments. In addition, lung-specific MDA-MB-231 clone invaded and extravasated into the lung microenvironment more efficiently than the bone-specific clone. Both invasion/chemotaxis and extravasation results were in agreement with published clinical data. Collectively, our results show that IC-chip and EX-chip, simulating tissue-specific microenvironments, can distinguish different in vivo metastatic phenotypes, in vitro. Determination of tissue-specific metastatic potential of breast cancer cells is expected to improve diagnosis and help select the ideal therapy.
Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Microambiente Tumoral , Neoplasias da Mama/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Invasividade Neoplásica , Metástase NeoplásicaRESUMO
Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold-based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold-free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label-free magnetic levitation technique was used to form three-dimensional (3D) scaffold-free adipocyte structures with various fabrication strategies in a microcapillary-based setup. Adipogenic-differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.
Assuntos
Adipócitos/metabolismo , Adipogenia , Diferenciação Celular , Campos Magnéticos , Engenharia Tecidual , Células A549 , Adipócitos/citologia , Humanos , Alicerces TeciduaisRESUMO
Bone is one of the most frequently targeted organs in metastatic cancers including the breast. Breast cancer bone metastasis often results in devastating outcomes as limited treatment options are currently available. Therefore, innovative methods are needed to provide earlier detection and thus better treatment and prognosis. Here, we present a new approach to model bone-like microenvironments to detect invasion and extravasation of breast cancer cells using invasion/chemotaxis (IC-) and extravasation (EX-) chips, respectively. Our results show that the behaviors of MDA-MB-231 breast cancer cells on IC- and EX-chip models correlate with their in vivo metastatic potential. Our culture model constitutes cell lines representing osteoblasts, bone marrow stromal cells, and monocytes embedded in three-dimensional (3D) collagen I-based extracellular matrices of varying composition and stiffness. We show that collagen I offers a better bone-like environment for bone cells and matrix composition and stiffness regulate the invasion of breast cancer cells. Using in situ contactless rheological measurements under cell culture conditions, we show that the presence of cells increased the stiffness values of the matrices up to 1200 Pa when monitored for five days. This suggests that the cellular composition has a significant effect on regulating matrix mechanical properties, which in turn contribute to the invasiveness. The platforms we present here enable the investigation of the underlying molecular mechanisms in breast cancer bone metastasis and provide the groundwork of developing preclinical tools for the prediction of bone metastasis risk.
Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Invasividade Neoplásica , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Feminino , Linhagem Celular Tumoral , Quimiotaxia , Microambiente Tumoral , Animais , Matriz Extracelular/metabolismo , Colágeno Tipo I/metabolismo , Movimento Celular , CamundongosRESUMO
Breast cancer is the leading cause of cancer-related deaths in women. Multiple molecular subtypes, heterogeneity, and their ability to metastasize from the primary site to distant organs make breast cancer challenging to diagnose, treat, and obtain the desired therapeutic outcome. As the clinical importance of metastasis is dramatically increasing, there is a need to develop sustainable in vitro preclinical platforms to investigate complex cellular processes. Traditional in vitro and in vivo models cannot mimic the highly complex and multistep process of metastasis. Rapid progress in micro- and nanofabrication has contributed to soft lithography or three-dimensional printing-based lab-on-a-chip (LOC) systems. LOC platforms, which mimic in vivo conditions, offer a more profound understanding of cellular events and allow novel preclinical models for personalized treatments. Their low cost, scalability, and efficiency have resulted in on-demand design platforms for cell, tissue, and organ-on-a-chip platforms. Such models can overcome the limitations of two- and three-dimensional cell culture models and the ethical challenges involved in animal models. This review provides an overview of breast cancer subtypes, various steps and factors involved in metastases, existing preclinical models, and representative examples of LOC systems used to study and understand breast cancer metastasis and diagnosis and as a platform to evaluate advanced nanomedicine for breast cancer metastasis.