Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Surg Innov ; : 15533506241262946, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905568

RESUMO

Plastic surgeons routinely use 3D-models in their clinical practice, from 3D-photography and surface imaging to 3D-segmentations from radiological scans. However, these models continue to be viewed on flattened 2D screens that do not enable an intuitive understanding of 3D-relationships and cause challenges regarding collaboration with colleagues. The Metaverse has been proposed as a new age of applications building on modern Mixed Reality headset technology that allows remote collaboration on virtual 3D-models in a shared physical-virtual space in real-time. We demonstrate the first use of the Metaverse in the context of reconstructive surgery, focusing on preoperative planning discussions and trainee education. Using a HoloLens headset with the Microsoft Mesh application, we performed planning sessions for 4 DIEP-flaps in our reconstructive metaverse on virtual patient-models segmented from routine CT angiography. In these sessions, surgeons discuss perforator anatomy and perforator selection strategies whilst comprehensively assessing the respective models. We demonstrate the workflow for a one-on-one interaction between an attending surgeon and a trainee in a video featuring both viewpoints as seen through the headset. We believe the Metaverse will provide novel opportunities to use the 3D-models that are already created in everyday plastic surgery practice in a more collaborative, immersive, accessible, and educational manner.

2.
Plant Cell ; 25(11): 4640-57, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285789

RESUMO

The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (-)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/metabolismo , Monoterpenos/metabolismo , Monoterpenos Acíclicos , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Mutação , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Nicotiana/genética
3.
J Plant Res ; 129(3): 499-512, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26879930

RESUMO

Plant triterpenoids are a diverse group of secondary metabolites with wide distribution, high chemical diversity and interesting pharmacological and antimicrobial properties. The first step in the biosynthesis of all triterpenoids is the cyclization of the 2,3-oxidosqualene precursor, catalyzed by oxidosqualene cyclases (OSCs), which have characteristic product specificities. Biosynthesis and functions of pentacyclic triterpenes have been poorly studied in grapevine. In this study, we first investigated the profile of triterpenoids present in leaf cuticular waxes from eight Vitis vinifera cultivars cultivated in the Upper Rhine Valley. Further quantification of triterpenoids showed that these cultivars can be divided into two groups, characterized by high levels of lupeol (e.g., Pinot noir) or taraxerol (e.g., Gewurztraminer) respectively. We further analyzed the OSC family involved in the synthesis of pentacyclic triterpenes (called VvTTPSs) in the sequenced V. vinifera 40024 genome and found nine genes with similarity to previously characterized triterpene synthases. Phylogenetic analysis further showed that VvTTPS1-VvTTPS3 and VvTTPS5-VvTTPS9 belong to the ß-amyrin synthase and multifunctional triterpene synthase clade, whereas VvTTPS10 belongs to the lupeol synthase clade. We studied the expression of several members of the VvTTPS family following biotic and abiotic stresses in V. vinifera 40024 as well as in the eight healthy cultivars. This study further revealed that one candidate gene, VvTTPS5, which does not belong to the lupeol synthase clade, is highly expressed in lupeol-rich cultivars. VvTTPS3, VvTTPS5, VvTTPS6, VvTTPS7 and VvTTPS10 were highly upregulated by UV stress, but only VvTTPS3, VvTTPS5, VvTTPS6 and VvTTPS10 were upregulated following downy mildew and gray mold infections respectively. These results suggest differential roles of VvTTPS against environmental stresses in grape leaves.


Assuntos
Alquil e Aril Transferases/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo , Vitis/enzimologia , Vitis/crescimento & desenvolvimento , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Cromatografia Gasosa , França , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Solubilidade , Estresse Fisiológico/genética , Triterpenos/química , Vitis/genética , Ceras/metabolismo
4.
BMC Microbiol ; 15: 221, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26483054

RESUMO

BACKGROUND: Terpenes represent one of the largest and most diversified families of natural compounds and are used in numerous industrial applications. Terpene synthase (TPS) genes originated in bacteria as diterpene synthase (di-TPS) genes. They are also found in plant and fungal genomes. The recent availability of a large number of fungal genomes represents an opportunity to investigate how genes involved in diterpene synthesis were acquired by fungi, and to assess the consequences of this process on the fungal metabolism. RESULTS: In order to investigate the origin of fungal di-TPS, we implemented a search for potential fungal di-TPS genes and identified their presence in several unrelated Ascomycota and Basidiomycota species. The fungal di-TPS phylogenetic tree is function-related but is not associated with the phylogeny based on housekeeping genes. The lack of agreement between fungal and di-TPS-based phylogenies suggests the presence of Horizontal Gene Transfer (HGTs) events. Further evidence for HGT was provided by conservation of synteny of di-TPS and neighbouring genes in distantly related fungi. CONCLUSIONS: The results obtained here suggest that fungal di-TPSs originated from an ancient HGT event of a single di-TPS gene from a plant to a fungus in Ascomycota. In fungi, these di-TPSs allowed for the formation of clusters consisting in di-TPS, GGPPS and P450 genes to create functional clusters that were transferred between fungal species, producing diterpenes acting as hormones or toxins, thus affecting fungal development and pathogenicity.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo , Diterpenos/metabolismo , Evolução Molecular , Redes e Vias Metabólicas/genética , Transferência Genética Horizontal , Genes Fúngicos , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
5.
Plast Reconstr Surg ; 153(2): 524-534, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092985

RESUMO

BACKGROUND: Autologous breast reconstruction yields improved long-term aesthetic results but requires increased resources of practitioners and hospital systems. Innovations in radiographic imaging have been increasingly used to improve the efficiency and success of free flap harvest. Augmented reality affords the opportunity to superimpose relevant imaging on a surgeon's native field of view, potentially facilitating dissection of anatomically variable structures. To validate the spatial fidelity of augmented reality projections of deep inferior epigastric perforator flap-relevant anatomy, comparisons of three-dimensional (3D) models and their virtual renderings were performed by four independent observers. Measured discrepancies between the real and holographic models were evaluated. METHODS: The 3D-printed models of deep inferior epigastric perforator flap-relevant anatomy were fabricated from computed tomographic angiography data from 19 de-identified patients. The corresponding computed tomographic angiography data were similarly formatted for the Microsoft HoloLens to generate corresponding projections. Anatomic points were initially measured on 3D models, after which the corresponding points were measured on the HoloLens projections from two separate vantage points (V1 and V2). Statistical analyses, including generalized linear modeling, were performed to characterize spatial fidelity regarding translation, rotation, and scale of holographic projections. RESULTS: Among all participants, the median translational displacement at corresponding points was 9.0 mm between the real-3D model and V1, 12.1 mm between the 3D model and V2, and 13.5 mm between V1 and V2. CONCLUSION: Corresponding points, including topography of perforating vessels, for the purposes of breast reconstruction can be identified within millimeters, but there remain multiple independent contributors of error, most notably the participant and location at which the projection is perceived.


Assuntos
Realidade Aumentada , Mamoplastia , Retalho Perfurante , Humanos , Retalho Perfurante/irrigação sanguínea , Mamoplastia/métodos , Angiografia por Tomografia Computadorizada , Tomografia Computadorizada por Raios X/métodos , Artérias Epigástricas
6.
Plast Reconstr Surg ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351515

RESUMO

Preoperative CT angiography (CTA) is increasingly performed prior to perforator flap-based reconstruction. However, radiological 2D thin-slices do not allow for intuitive interpretation and translation to intraoperative findings. 3D volume rendering has been used to alleviate the need for mental 2D-to-3D abstraction. Even though volume rendering allows for a much easier understanding of anatomy, it currently has limited utility as the skin obstructs the view of critical structures. Using free, open-source software, we introduce a new skin-masking technique that allows surgeons to easily create a segmentation mask of the skin that can later be used to toggle the skin on and off. Additionally, the mask can be used in other rendering applications. We use Cinematic Anatomy for photorealistic volume rendering and interactive exploration of the CTA with and without skin. We present results from using this technique to investigate perforator anatomy in deep inferior epigastric perforator flaps and demonstrate that the skin-masking workflow is performed in less than 5 minutes. In Cinematic Anatomy, the view onto the abdominal wall and especially onto perforators becomes significantly sharper and more detailed when no longer obstructed by the skin. We perform a virtual, partial muscle dissection to show the intramuscular and submuscular course of the perforators. The skin-masking workflow allows surgeons to improve arterial and perforator detail in volume renderings easily and quickly by removing skin and could alternatively also be performed solely using open-source and free software. The workflow can be easily expanded to other perforator flaps without the need for modification.

7.
Plast Reconstr Surg Glob Open ; 12(6): e5933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919516

RESUMO

Preoperative vascular imaging has become standard practice in the planning of microsurgical breast reconstruction. Currently, translating perforator locations from radiological findings to a patient's abdomen is often not easy or intuitive. Techniques using three-dimensional printing or patient-specific guides have been introduced to superimpose anatomy onto the abdomen for reference. Augmented and mixed reality is currently actively investigated for perforator mapping by superimposing virtual models directly onto the patient. Most techniques have found only limited adoption due to complexity and price. Additionally, a critical step is aligning virtual models to patients. We propose repurposing suture packaging as an image tracking marker. Tracking markers allow quick and easy alignment of virtual models to the individual patient's anatomy. Current techniques are often complicated or expensive and limit intraoperative use of augmented reality models. Suture packs are sterile, readily available, and can be used to align abdominal models on the patients. Using an iPad, the augmented reality models automatically align in the correct position by using a suture pack as a tracking marker. Given the ubiquity of iPads, the combination of these devices with readily available suture packs will predictably lower the barrier to entry and utilization of this technology. Here, our workflow is presented along with its intraoperative utilization. Additionally, we investigated the accuracy of this technology.

8.
Plast Reconstr Surg Glob Open ; 12(7): e5940, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957720

RESUMO

We introduce a novel technique using augmented reality (AR) on smartphones and tablets, making it possible for surgeons to review perforator anatomy in three dimensions on the go. Autologous breast reconstruction with abdominal flaps remains challenging due to the highly variable anatomy of the deep inferior epigastric artery. Computed tomography angiography has mitigated some but not all challenges. Previously, volume rendering and different headsets were used to enable better three-dimensional (3D) review for surgeons. However, surgeons have been dependent on others to provide 3D imaging data. Leveraging the ubiquity of Apple devices, our approach permits surgeons to review 3D models of deep inferior epigastric artery anatomy segmented from abdominal computed tomography angiography directly on their iPhone/iPad. Segmentation can be performed in common radiology software. The models are converted to the universal scene description zipped format, which allows immediate use on Apple devices without third-party software. They can be easily shared using secure, Health Insurance Portability and Accountability Act-compliant sharing services already provided by most hospitals. Surgeons can simply open the file on their mobile device to explore the images in 3D using "object mode" natively without additional applications or can switch to AR mode to pin the model in their real-world surroundings for intuitive exploration. We believe patient-specific 3D anatomy models are a powerful tool for intuitive understanding and communication of complex perforator anatomy and would be a valuable addition in routine clinical practice and education. Using this one-click solution on existing devices that is simple to implement, we hope to streamline the adoption of AR models by plastic surgeons.

9.
Biotechnol Bioeng ; 108(8): 1883-92, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21391209

RESUMO

Terpenoids are one of the largest and most diverse families of natural compounds. They are heavily used in industry, and the trend is toward engineering modified microorganisms that produce high levels of specific terpenoids. Most studies have focused on creating specific heterologous pathways for sesquiterpenes in Escherichia coli or yeast. We subjected the Saccharomyces cerevisiae ERG20 gene (encoding farnesyl diphosphate synthase) to a set of amino acid mutations in the catalytic site at position K197. Mutated strains have been shown to exhibit various growth rate, sterol amount, and monoterpenol-producing capacities. These results are discussed in the context of the potential use of these mutated strains for heterologous expression of monoterpenoid synthases, which was investigated using Ocimum basilicum geraniol synthase. The results obtained with up to 5 mg/L geraniol suggest a major improvement compared with previous available expression systems like Escherichia coli or yeast strains with an unmodified ERG20 gene that respectively delivered amounts in the 10 and 500 µg/L range or even a previously characterized K197E mutation that delivered amounts in the 1 mg/L range.


Assuntos
Engenharia Genética , Redes e Vias Metabólicas/genética , Monoterpenos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos/genética , Expressão Gênica , Geraniltranstransferase/genética , Modelos Moleculares , Ocimum basilicum/enzimologia , Ocimum basilicum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
10.
Antonie Van Leeuwenhoek ; 100(2): 197-206, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21442351

RESUMO

The control of grapevine pathogens is a rising concern in Vitis vinifera culture. The current international trend is toward banning chemicals that are highly toxic to the environment and human workers, and adopting tighter regulations. We evaluated the impact of saponins on three kinds of organisms found in grapevine culture. The ectoparasitic nematode Xiphinema index, the parasitic fungus Botrytis cinerea and various yeast strains representative of the must fermentation population were incubated on synthetic media supplemented with variable concentrations of Quillaja saponaria saponins. Saponins induced reduction in the growth of B. cinerea and showed nematicide effects on X. index. The control of X. index and Botrytis cinerea is discussed in the context of the potential use of these chemicals as environmentally-friendly grapevine treatments. With Saccharomyces cerevisiae and other yeasts, saponins showed higher toxicity against S. cerevisiae strains isolated from wine or palm wine whereas laboratory strains or strains isolated from oak exhibited better resistance. This indicates that Q. saponaria saponins effects against yeast microflora should be assessed in the field before they can be considered an environmentally-safe new molecule against B. cinerea and X. index.


Assuntos
Botrytis/efeitos dos fármacos , Nematoides/efeitos dos fármacos , Quillaja/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saponinas/farmacologia , Vitis/microbiologia , Animais , Antinematódeos/farmacologia , Botrytis/crescimento & desenvolvimento , Fermentação , Germinação , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Casca de Planta/química , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Vitis/parasitologia , Vinho/microbiologia
11.
J Trauma Acute Care Surg ; 91(2S Suppl 2): S40-S45, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33938509

RESUMO

ABSTRACT: The objective of this project was to identify and develop software for an augmented reality application that runs on the US Army Integrated Visual Augmentation System (IVAS) to support a medical caregiver during tactical combat casualty care scenarios. In this augmented reality tactical combat casualty care application, human anatomy of individual soldiers obtained predeployment is superimposed on the view of an injured war fighter through the IVAS. This offers insight into the anatomy of the injured war fighter to advance treatment in austere environments.In this article, we describe various software components required for an augmented reality tactical combat casualty care tool. These include a body pose tracking system to track the patient's body pose, a virtual rendering of a human anatomy avatar, speech input to control the application and rendering techniques to visualize the virtual anatomy, and treatment information on the augmented reality display. We then implemented speech commands and visualization for four common medical scenarios including injury of a limb, a blast to the pelvis, cricothyrotomy, and a pneumothorax on the Microsoft HoloLens 1 (Microsoft, Redmond, WA).The software is designed for a forward surgical care tool on the US Army IVAS, with the intention to provide the medical caregiver with a unique ability to quickly assess affected internal anatomy. The current software components still had some limitations with respect to speech recognition reliability during noise and body pose tracking. These will likely be improved with the improved hardware of the IVAS, which is based on a modified HoloLens 2.


Assuntos
Realidade Aumentada , Medicina Militar , Traumatologia , Lesões Relacionadas à Guerra/cirurgia , Diagnóstico por Imagem , Previsões , Humanos , Iluminação , Medicina Militar/métodos , Medicina Militar/tendências , Software , Interface para o Reconhecimento da Fala , Traumatologia/métodos , Traumatologia/tendências , Estados Unidos
12.
J Biotechnol ; 163(1): 24-9, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23108028

RESUMO

Numerous aromatic plant species produce high levels of monoterpenols, using geranyl diphosphate (GPP) as a precursor. Sweet basil (Ocimum basilicum) geraniol synthase (GES) was used to evaluate the monoterpenol profiles arising from heterologous expressions in various plant models. Grapevine (Vitis vinifera) calli were transformed using Agrobacterium tumefasciens and the plants were regenerated. Thale cress (Arabidopsis thaliana) was transformed using the floral dip method. Tobacco (Nicotiana benthamiana) leaves were agro-infiltrated for transient expression. Although, as expected, geraniol was the main product detected in the leaves, different minor products were observed in these plants (V. vinifera: citronellol and nerol; N. benthamiana: linalool and nerol; A. thaliana: none). O. basilicum GES expression was also carried out with microbial system yeasts (Saccharomyces cerevisiae) and Escherichia coli. These results suggest that the functional properties of a monoterpenol synthase depend not only on the enzyme's amino-acidic sequence, but also on the cellular background. They also suggest that some plant species or microbial expression systems could induce the simultaneous formation of several carbocations, and could thus have a natural tendency to produce a wider spectrum of monoterpenols.


Assuntos
Biotecnologia/métodos , Monoterpenos/análise , Monoterpenos/metabolismo , Ocimum basilicum/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transfecção/métodos , Agrobacterium/genética , Agrobacterium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ocimum basilicum/genética , Monoéster Fosfórico Hidrolases/biossíntese , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
13.
Phytochemistry ; 85: 36-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23102596

RESUMO

Madagascar periwinkle (Catharanthus roseus [L.] G. Don, Apocynaceae) produces monoterpene indole alkaloids (MIAs), secondary metabolites of high interest due to their therapeutic value. A key step in the biosynthesis is the generation of geraniol from geranyl diphosphate (GPP) in the monoterpenoid branch of the MIA pathway. Here we report on the cloning and functional characterization of C. roseus geraniol synthase (CrGES). The full-length CrGES was over-expressed in Escherichia coli and the purified recombinant protein catalyzed the conversion of GPP into geraniol with a K(m) value of 58.5 µM for GPP. In vivo CrGES activity was evaluated by heterologous expression in a Saccharomyces cerevisiae strain mutated in the farnesyl diphosphate synthase gene. Analysis of culture extracts by gas chromatography-mass spectrometry confirmed the excretion of geraniol into the growth medium. Transient transformation of C. roseus cells with a Yellow Fluorescent Protein-fusion construct revealed that CrGES is localized in plastid stroma and stromules. In aerial plant organs, RNA in situ hybridization showed specific labeling of CrGES transcripts in the internal phloem associated parenchyma as observed for other characterized genes involved in the early steps of MIA biosynthesis. Finally, when cultures of Catharanthus cells were treated with the alkaloid-inducing hormone methyl jasmonate, an increase in CrGES transcript levels was observed. This observation coupled with the tissue-specific expression and the subcellular compartmentalization support the idea that CrGES initiates the monoterpenoid branch of the MIA biosynthetic pathway.


Assuntos
Catharanthus/enzimologia , Monoterpenos/metabolismo , Floema/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Protein J ; 30(5): 334-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21643844

RESUMO

The Saccharomyces cerevisiae ERG20 gene (encoding farnesyl diphosphate synthase) has been subjected to a set of mutations at the catalytic site, at position K254 to determine the in vivo impact. The mutated strains have been shown to exhibit various growth rates, sterol profiles and monoterpenol producing capacities. The results obtained suggest that K at position 254 helps to stabilize one of the three Mg(2+) forming a bridge between the enzyme and DMAPP, and demonstrate that destabilizing two of the three Mg(2+) ions, by introducing a double mutation at positions K197 and K254, results in a loss of FPPS activity and a lethal phenotype.


Assuntos
Geraniltranstransferase/química , Lisina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Processos de Crescimento Celular/genética , Sobrevivência Celular/genética , Estabilidade Enzimática , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemiterpenos , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Monoterpenos/metabolismo , Mutagênese Sítio-Dirigida , Compostos Organofosforados , Fitosteróis/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA