RESUMO
The pathogenic consequences of 369 unique human HsMLH1 missense variants has been hampered by the lack of a detailed function in mismatch repair (MMR). Here single-molecule images show that HsMSH2-HsMSH6 provides a platform for HsMLH1-HsPMS2 to form a stable sliding clamp on mismatched DNA. The mechanics of sliding clamp progression solves a significant operational puzzle in MMR and provides explicit predictions for the distribution of clinically relevant HsMLH1 missense mutations.
Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Sítios de Ligação , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , DNA/química , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Proteína 1 Homóloga a MutL/química , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/química , Proteína 2 Homóloga a MutS/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre ProteínasRESUMO
MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.
Assuntos
Proteínas de Escherichia coli , Proteína MutS de Ligação de DNA com Erro de Pareamento , Humanos , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas MutS/genética , Ligação ProteicaRESUMO
Retroviral integrases must navigate host DNA packaged as chromatin during integration of the viral genome. Prototype foamy virus (PFV) integrase (IN) forms a tetramer bound to two viral DNA (vDNA) ends in a complex termed an intasome. PFV IN consists of four domains: the amino terminal extension domain (NED), amino terminal domain (NTD), catalytic core domain (CCD), and carboxyl terminal domain (CTD). The domains of the two inner IN protomers have been visualized, as well as the CCDs of the two outer IN protomers. However, the roles of the amino and carboxyl terminal domains of the PFV intasome outer subunits during integration to a nucleosome target substrate are not clear. We used the well-characterized 601 nucleosome to assay integration activity as well as intasome binding. PFV intasome integration to 601 nucleosomes occurs in clusters at four independent sites. We find that the outer protomer NED and NTD domains have no significant effects on integration efficiency, site selection, or binding. The CTDs of the outer PFV intasome subunits dramatically affect nucleosome binding but have little effect on total integration efficiency. The outer PFV IN CTDs did significantly alter the integration efficiency at one site. Histone tails also significantly affect intasome binding, but have little impact on PFV integration efficiency or site selection. These results indicate that binding to nucleosomes does not correlate with integration efficiency and suggests most intasome-binding events are unproductive.
Assuntos
Histonas/metabolismo , Integrases/metabolismo , Nucleossomos/metabolismo , Spumavirus/metabolismo , Proteínas Virais/metabolismo , Integração Viral , Domínio Catalítico , Cromatina/genética , Cromatina/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Genoma Viral , Humanos , Integrases/genética , Multimerização Proteica , Spumavirus/genética , Spumavirus/crescimento & desenvolvimento , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Mismatched nucleotides arise from polymerase misincorporation errors, recombination between heteroallelic parents and chemical or physical DNA damage. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologues initiate mismatch repair and, in higher eukaryotes, act as DNA damage sensors that can trigger apoptosis. Defects in human mismatch repair genes cause Lynch syndrome or hereditary non-polyposis colorectal cancer and 10-40% of related sporadic tumours. However, the collaborative mechanics of MSH and MLH/PMS proteins have not been resolved in any organism. We visualized Escherichia coli (Ec) ensemble mismatch repair and confirmed that EcMutS mismatch recognition results in the formation of stable ATP-bound sliding clamps that randomly diffuse along the DNA with intermittent backbone contact. The EcMutS sliding clamps act as a platform to recruit EcMutL onto the mismatched DNA, forming an EcMutS-EcMutL search complex that then closely follows the DNA backbone. ATP binding by EcMutL establishes a second long-lived DNA clamp that oscillates between the principal EcMutS-EcMutL search complex and unrestricted EcMutS and EcMutL sliding clamps. The EcMutH endonuclease that targets mismatch repair excision only binds clamped EcMutL, increasing its DNA association kinetics by more than 1,000-fold. The assembly of an EcMutS-EcMutL-EcMutH search complex illustrates how sequential stable sliding clamps can modulate one-dimensional diffusion mechanics along the DNA to direct mismatch repair.
Assuntos
Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Difusão , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas MutL/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Trifosfato de Adenosina/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Cinética , Complexos Multiproteicos/química , Proteínas MutL/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Transporte Proteico , Imagem Individual de MoléculaRESUMO
Conformations adopted by long stretches of single-stranded DNA (ssDNA) are of central interest in understanding the architecture of replication forks, R loops, and other structures generated during DNA metabolism in vivo This is particularly so if the ssDNA consists of short nucleotide repeats. Such studies have been hampered by the lack of defined substrates greater than â¼150 nt and the absence of high-resolution biophysical approaches. Here we describe the generation of very long ssDNA consisting of the mammalian telomeric repeat (5'-TTAGGG-3') n , as well as the interrogation of its structure by EM and single-molecule magnetic tweezers (smMT). This repeat is of particular interest because it contains a run of three contiguous guanine residues capable of forming G quartets as ssDNA. Fluorescent-dye exclusion assays confirmed that this G-strand ssDNA forms ubiquitous G-quadruplex folds. EM revealed thick bead-like filaments that condensed the DNA â¼12-fold. The bead-like structures were 5 and 8 nm in diameter and linked by thin filaments. The G-strand ssDNA displayed initial stability to smMT force extension that ultimately released in steps that were multiples â¼28 nm at forces between 6 and 12 pN, well below the >20 pN required to unravel G-quadruplexes. Most smMT steps were consistent with the disruption of the beads seen by EM. Binding by RAD51 distinctively altered the force extension properties of the G-strand ssDNA, suggesting a stochastic G-quadruplex-dependent condensation model that is discussed.
Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , Quadruplex G , Sequência de Bases , DNA de Cadeia Simples/metabolismo , Humanos , Ligação Proteica , Rad51 Recombinase/metabolismo , Telômero/química , Telômero/metabolismo , Telômero/ultraestruturaRESUMO
Sliding clamps on DNA consist of evolutionarily conserved enzymes that coordinate DNA replication, repair, and the cellular DNA damage response. MutS homolog (MSH) proteins initiate mismatch repair (MMR) by recognizing mispaired nucleotides and in the presence of ATP form stable sliding clamps that randomly diffuse along the DNA. The MSH sliding clamps subsequently load MutL homolog (MLH/PMS) proteins that form a second extremely stable sliding clamp, which together coordinate downstream MMR components with the excision-initiation site that may be hundreds to thousands of nucleotides distant from the mismatch. Specific or nonspecific binding of other proteins to the DNA between the mismatch and the distant excision-initiation site could conceivably obstruct the free diffusion of these MMR sliding clamps, inhibiting their ability to initiate repair. Here, we employed bulk biochemical analysis, single-molecule fluorescence imaging, and mathematical modeling to determine how sliding clamps might overcome such hindrances along the DNA. Using both bacterial and human MSH proteins, we found that increasing the number of MSH sliding clamps on a DNA decreased the association of the Escherichia coli transcriptional repressor LacI to its cognate promoter LacO. Our results suggest a simple mechanism whereby thermal diffusion of MSH sliding clamps along the DNA alters the association kinetics of other DNA-binding proteins over extended distances. These observations appear generally applicable to any stable sliding clamp that forms on DNA.
Assuntos
DNA Bacteriano/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Thermus/metabolismo , Trifosfato de Adenosina/metabolismo , Pareamento Incorreto de Bases , Modelos Teóricos , Ligação Proteica , Ressonância de Plasmônio de SuperfícieRESUMO
Wrapping of genomic DNA into nucleosomes poses thermodynamic and kinetic barriers to biological processes such as replication, transcription, repair and recombination. Previous biochemical studies have demonstrated that in the presence of adenosine triphosphate (ATP) the human RAD51 (HsRAD51) recombinase can form a nucleoprotein filament (NPF) on double-stranded DNA (dsDNA) that is capable of unwrapping the nucleosomal DNA from the histone octamer (HO). Here, we have used single molecule Förster Resonance Energy Transfer (smFRET) to examine the real time nucleosome dynamics in the presence of the HsRAD51 NPF. We show that oligomerization of HsRAD51 leads to stepwise, but stochastic unwrapping of the DNA from the HO in the presence of ATP. The highly reversible dynamics observed in single-molecule trajectories suggests an antagonistic mechanism between HsRAD51 binding and rewrapping of the DNA around the HO. These stochastic dynamics were independent of the nucleosomal DNA sequence or the asymmetry created by the presence of a linker DNA. We also observed sliding and rotational oscillations of the HO with respect to the nucleosomal DNA. These studies underline the dynamic nature of even tightly associated protein-DNA complexes such as nucleosomes.
Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Rad51 Recombinase/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/genética , DNA/metabolismo , Replicação do DNA , Histonas/química , Humanos , Hidrólise , Modelos Biológicos , Nucleoproteínas/metabolismo , Ligação Proteica , Multimerização ProteicaRESUMO
Mismatch repair (MMR) is activated by evolutionarily conserved MutS homologs (MSH) and MutL homologs (MLH/PMS). MSH recognizes mismatched nucleotides and form extremely stable sliding clamps that may be bound by MLH/PMS to ultimately authorize strand-specific excision starting at a distant 3'- or 5'-DNA scission. The mechanical processes associated with a complete MMR reaction remain enigmatic. The purified human (Homo sapien or Hs) 5'-MMR excision reaction requires the HsMSH2-HsMSH6 heterodimer, the 5' â 3' exonuclease HsEXOI, and the single-stranded binding heterotrimer HsRPA. The HsMLH1-HsPMS2 heterodimer substantially influences 5'-MMR excision in cell extracts but is not required in the purified system. Using real-time single-molecule imaging, we show that HsRPA or Escherichia coli EcSSB restricts HsEXOI excision activity on nicked or gapped DNA. HsMSH2-HsMSH6 activates HsEXOI by overcoming HsRPA/EcSSB inhibition and exploits multiple dynamic sliding clamps to increase tract length. Conversely, HsMLH1-HsPMS2 regulates tract length by controlling the number of excision complexes, providing a link to 5' MMR.
Assuntos
Pareamento Incorreto de Bases , Reparo do DNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismoRESUMO
Single-molecule (SM) microscopy is a powerful tool capable of visualizing individual molecules and events in real time. SM imaging may rely on proteins or nucleic acids labelled with a fluorophore. Unfortunately photobleaching of fluorophores leads to irreversible loss of signal, impacting the collection of data from SM experiments. Trace amounts of dissolved oxygen (O2) are the main cause of photobleaching. Oxygen scavenging systems (OSS) have been developed that decrease dissolved O2. Commercial OSS enzyme preparations are frequently contaminated with nucleases that damage nucleic acid substrates. In this protocol, we purify highly active Pseudomonas putida protocatechuate 3,4-dioxygenase (PCD) without nuclease contaminations. Quantitation of Cy3 photostability revealed that PCD with its substrate protocatechuic acid (PCA) increased the fluorophore half-life 100-fold. This low cost purification method of recombinant PCD yields an enzyme superior to commercially available OSS that is effectively free of nuclease activity.
Assuntos
Proteínas de Bactérias , Expressão Gênica , Hidroxibenzoatos/química , Imagem Óptica , Protocatecoate-3,4-Dioxigenase , Pseudomonas putida , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Desoxirribonucleases , Estabilidade Enzimática , Oxigênio/química , Protocatecoate-3,4-Dioxigenase/biossíntese , Protocatecoate-3,4-Dioxigenase/química , Protocatecoate-3,4-Dioxigenase/genética , Protocatecoate-3,4-Dioxigenase/isolamento & purificação , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
DNA nucleotide mismatches and lesions arise on chromosomes that are a complex assortment of protein and DNA (chromatin). The fundamental unit of chromatin is a nucleosome that contains approximately 146 bp DNA wrapped around an H2A, H2B, H3, and H4 histone octamer. We demonstrate that the mismatch recognition heterodimer hMSH2-hMSH6 disassembles a nucleosome. Disassembly requires a mismatch that provokes the formation of hMSH2-hMSH6 hydrolysis-independent sliding clamps, which translocate along the DNA to the nucleosome. The rate of disassembly is enhanced by actual or mimicked acetylation of histone H3 within the nucleosome entry-exit and dyad axis that occurs during replication and repair in vivo and reduces DNA-octamer affinity in vitro. Our results support a passive mechanism for chromatin remodeling whereby hMSH2-hMSH6 sliding clamps trap localized fluctuations in nucleosome positioning and/or wrapping that ultimately leads to disassembly, and highlight unanticipated strengths of the Molecular Switch Model for mismatch repair (MMR).
Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Pareamento Incorreto de Bases , DNA/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Humanos , Proteína 2 Homóloga a MutS/genética , Xenopus laevisRESUMO
High fidelity homologous DNA recombination depends on mismatch repair (MMR), which antagonizes recombination between divergent sequences by rejecting heteroduplex DNA containing excessive nucleotide mismatches. The hMSH2-hMSH6 heterodimer is the first responder in postreplicative MMR and also plays a prominent role in heteroduplex rejection. Whether a similar molecular mechanism underlies its function in these two processes remains enigmatic. We have determined that hMSH2-hMSH6 efficiently recognizes mismatches within a D-loop recombination initiation intermediate. Mismatch recognition by hMSH2-hMSH6 is not abrogated by human replication protein A (HsRPA) bound to the displaced single-stranded DNA (ssDNA) or by HsRAD51. In addition, ATP-bound hMSH2-hMSH6 sliding clamps that are essential for downstream MMR processes are formed and constrained within the heteroduplex region of the D-loop. Moreover, the hMSH2-hMSH6 sliding clamps are stabilized on the D-loop by HsRPA bound to the displaced ssDNA. Our findings reveal similarities and differences in hMSH2-hMSH6 mismatch recognition and sliding-clamp formation between a D-loop recombination intermediate and linear duplex DNA.
Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/química , DNA/química , Proteína 2 Homóloga a MutS/química , Recombinação Genética , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Pareamento Incorreto de Bases , Biotinilação , Humanos , Hidrólise , Cinética , Ligação Proteica , Estrutura Terciária de Proteína , Rad51 Recombinase/química , Proteína de Replicação A/químicaRESUMO
During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely complex promoter.
Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/metabolismo , Alginatos , Proteínas de Bactérias/genética , Sítios de Ligação , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Mutação , Ligação Proteica , Pseudomonas aeruginosa/genéticaRESUMO
Highly conserved MutS homologs (MSH) and MutL homologs (MLH/PMS) are the fundamental components of mismatch repair (MMR). After decades of debate, it appears clear that the MSH proteins initiate MMR by recognizing a mismatch and forming multiple extremely stable ATP-bound sliding clamps that diffuse without hydrolysis along the adjacent DNA. The function(s) of MLH/PMS proteins is less clear, although they too bind ATP and are targeted to MMR by MSH sliding clamps. Structural analysis combined with recent real-time single molecule and cellular imaging technologies are providing new and detailed insight into the thermal-driven motions that animate the complete MMR mechanism.
Assuntos
Trifosfato de Adenosina/metabolismo , Reparo de Erro de Pareamento de DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Trifosfato de Adenosina/genética , Animais , DNA/genética , Enzimas Reparadoras do DNA/genética , Humanos , Proteínas Nucleares/genéticaRESUMO
Double-strand breaks (DSB) occur in chromatin following replication fork collapse and chemical or physical damage [Symington and Gautier (Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011;45:247-271.)] and may be repaired by homologous recombination (HR) and non-homologous end-joining. Nucleosomes are the fundamental units of chromatin and must be remodeled during DSB repair by HR [Andrews and Luger (Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys. 2011;40:99-117.)]. Physical initiation of HR requires RAD51, which forms a nucleoprotein filament (NPF) that catalyzes homologous pairing and strand exchange (recombinase) between DNAs that ultimately bridges the DSB gap [San Filippo, Sung and Klein. (Mechanism of eukaryotic HR. Annu. Rev. Biochem. 2008;77:229-257.)]. RAD51 forms an NPF on single-stranded DNA and double-stranded DNA (dsDNA). Although the single-stranded DNA NPF is essential for recombinase initiation, the role of the dsDNA NPF is less clear. Here, we demonstrate that the human RAD51 (HsRAD51) dsDNA NPF disassembles nucleosomes by unwrapping the DNA from the core histones. HsRAD51 that has been constitutively or biochemically activated for recombinase functions displays significantly reduced nucleosome disassembly activity. These results suggest that HsRAD51 can perform ATP hydrolysis-dependent nucleosome disassembly in addition to its recombinase functions.
Assuntos
Trifosfato de Adenosina/metabolismo , Replicação do DNA , Nucleossomos/metabolismo , Rad51 Recombinase/metabolismo , Trifosfato de Adenosina/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/metabolismo , Genoma Humano , Instabilidade Genômica , Histonas/genética , Histonas/metabolismo , Humanos , Hidrólise , Nucleossomos/genética , Rad51 Recombinase/genética , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Reparo de DNA por Recombinação , Origem de ReplicaçãoRESUMO
Eukaryotic genomes are repetitively wrapped into nucleosomes that then regulate access of transcription and DNA repair complexes to DNA. The mechanisms that regulate extrinsic protein interactions within nucleosomes are unresolved. We demonstrate that modulation of the nucleosome unwrapping rate regulates protein binding within nucleosomes. Histone H3 acetyl-lysine 56 [H3(K56ac)] and DNA sequence within the nucleosome entry-exit region additively influence nucleosomal DNA accessibility by increasing the unwrapping rate without impacting rewrapping. These combined epigenetic and genetic factors influence transcription factor (TF) occupancy within the nucleosome by at least one order of magnitude and enhance nucleosome disassembly by the DNA mismatch repair complex, hMSH2-hMSH6. Our results combined with the observation that â¼30% of Saccharomyces cerevisiae TF-binding sites reside in the nucleosome entry-exit region suggest that modulation of nucleosome unwrapping is a mechanism for regulating transcription and DNA repair.
Assuntos
Montagem e Desmontagem da Cromatina , DNA/química , Nucleossomos/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas , Proteína 2 Homóloga a MutS/metabolismo , Nucleossomos/química , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Xenopus laevisRESUMO
Nucleosomes are stable DNA-histone protein complexes that must be unwrapped and disassembled for genome expression, replication, and repair. Histone posttranslational modifications (PTMs) are major regulatory factors of these nucleosome structural changes, but the molecular mechanisms associated with PTM function remains poorly understood. Here we demonstrate that histone PTMs within distinct structured regions of the nucleosome directly regulate the inherent dynamic properties of the nucleosome. Precise PTMs were introduced into nucleosomes by chemical ligation. Single molecule magnetic tweezers measurements determined that only PTMs near the nucleosome dyad increase the rate of histone release in unwrapped nucleosomes. In contrast, FRET and restriction enzyme analysis reveal that only PTMs throughout the DNA entry-exit region increase unwrapping and enhance transcription factor binding to nucleosomal DNA. These results demonstrate that PTMs in separate structural regions of the nucleosome control distinct dynamic events, where the dyad regulates disassembly while the DNA entry-exit region regulates unwrapping. These studies are consistent with the conclusion that histone PTMs may independently influence nucleosome dynamics and associated chromatin functions.
Assuntos
DNA/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nucleossomos/metabolismo , Acetilação , Algoritmos , Animais , DNA/química , DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , Histonas/química , Histonas/genética , Cinética , Lisina/química , Lisina/genética , Microscopia de Força Atômica , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleossomos/genética , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMO
DNA supercoiling significantly influences DNA metabolic pathways. To examine its impact on DNA-protein interactions at the single-molecule level, we developed a highly efficient and reliable protocol to modify plasmid DNA at specific sites, allowing us to label plasmids with fluorophores and biotin. We then induced negative and positive supercoiling in these plasmids using gyrase and reverse gyrase, respectively. Comparing supercoiled DNA with relaxed circular DNA, we assessed the effects of supercoiling on CRISPR-Cas9 and mismatch repair protein MutS. We found that negative DNA supercoiling exacerbates off-target effects in DNA unwinding by Cas9. For MutS, we observed both negative and positive DNA supercoiling enhances the binding interaction between MutS and a mismatched base pair but does not affect the rate of ATP-induced sliding clamp formation. These findings not only underscore the versatility of our protocol but also opens new avenues for exploring the intricate dynamics of protein-DNA interactions under the influences of supercoiling.
RESUMO
Colorectal cancer is the second leading cause of cancer mortality in the US. Although immune checkpoint blockade therapies including anti-PD-1/PD-L1 have been successful in treating a subset of colorectal cancer patients, response rates remain low. We have found that riluzole, a well-tolerated FDA-approved oral medicine for treating amyotrophic lateral sclerosis, increased intratumoral CD8+ T cells and suppressed tumor growth of colon cancer cells in syngeneic immune competent mice. Riluzole-mediated tumor suppression was dependent on the presence of CD8+ T cells. Riluzole activates the cytosolic DNA sensing cGAS/STING pathway in colon cancer cells, resulting in increased expression of interferon ß (IFNß) and IFNß-regulated genes including CXCL10. Inhibition of ATM, but not ATR, resulted in a synergistic increase in IFNß expression, suggesting that riluzole induces ATM-mediated damage response that contribute to cGAS/STING activation. Depletion of cGAS or STING significantly attenuated riluzole-induced expression of IFNß and CXCL10 as well as increase of intratumoral CD8+ T cells and suppression of tumor growth. These results indicate that riluzole-mediated tumor infiltration of CD8+ T cells and attenuation of tumor growth is dependent on tumor cell intrinsic STING activation. To determine whether riluzole treatment primes the tumor microenvironment for immune checkpoint modulation, riluzole was combined with anti-PD-1 treatment. This combination showed greater efficacy than either single agent, and strongly suppressed tumor growth in vivo. Taken together, our studies indicate that riluzole activates cGAS/STING-mediated innate immune responses, which might be exploited to sensitize colorectal tumors to anti-PD-1/PD-L1 therapies. .
RESUMO
FOLFOX, composed of 5-FU, oxaliplatin and leucovorin, is a first line chemotherapy regimen for colorectal cancer (CRC) treatment. In this study, we show that 5-FU and oxaliplatin induce DNA damage and activate cGAS/STING signaling leading to enhanced expression of interferon (IFN) ß, IFN-stimulated genes and inflammatory cytokines in mouse and human colon cancer cells as well as increased intratumoral CD8+ T cells in mice. Crucially, 5-FU and oxaliplatin increase PD-L1 expression at the mRNA and protein levels, which has been shown to inhibit CD8+ T cell function. Depletion of cGAS, STING, IRF3, or IFNα/ß receptor 1 (IFNAR1) abolishes this increase, indicating that 5-FU/oxaliplatin mediated upregulation of PD-L1 expression is dependent on tumor cell intrinsic cGAS/STING signaling. These results imply opposing roles for FOLFOX during cancer treatment. On one hand, 5-FU and oxaliplatin activate the innate immune response to facilitate anti-tumor immunity, and conversely upregulate PD-L1 expression to evade immune surveillance. Analysis of TCGA colon cancer dataset shows a positive correlation between expression of PD-L1 and components of the cGAS/STING pathway, supporting a role for cGAS/STING signaling in upregulating PD-L1 expression in colon cancer patients. Tumor studies in syngeneic immune competent mice demonstrate that the combination of 5-FU/oxaliplatin and anti-PD-1 significantly reduced tumor growth of colon cancer cells compared to 5-FU/oxaliplatin treatment alone. Taken together, our studies have identified a unique pathway leading to chemoresistance and provide a rationale to combine FOLFOX with anti-PD-1/PD-L1 as an effective CRC treatment.