Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(42): 14510-14521, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817170

RESUMO

Cyclic peptides are reported to have antibacterial, antifungal, and other bioactivities. Orbitides are a class of cyclic peptides that are small, head-to-tail cyclized, composed of proteinogenic amino acids and lack disulfide bonds; they are also known in several genera of the plant family Rutaceae. Melicope xanthoxyloides is the Australian rain forest tree of the Rutaceae family in which evolidine, the first plant cyclic peptide, was discovered. Evolidine (cyclo-SFLPVNL) has subsequently been all but forgotten in the academic literature, so to redress this we used tandem MS and de novo transcriptomics to rediscover evolidine and decipher its biosynthetic origin from a short precursor just 48 residues in length. We also identified another six M. xanthoxyloides orbitides using the same techniques. These peptides have atypically diverse C termini consisting of residues not recognized by either of the known proteases plants use to macrocyclize peptides, suggesting new cyclizing enzymes await discovery. We examined the structure of two of the novel orbitides by NMR, finding one had a definable structure, whereas the other did not. Mining RNA-seq and whole genome sequencing data from other species of the Rutaceae family revealed that a large and diverse family of peptides is encoded by similar sequences across the family and demonstrates how powerful de novo transcriptomics can be at accelerating the discovery of new peptide families.


Assuntos
Peptídeos Cíclicos/genética , Rutaceae/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Folhas de Planta/metabolismo , Rutaceae/genética , Alinhamento de Sequência , Espectrometria de Massas em Tandem
2.
J Nat Prod ; 84(11): 2914-2922, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34672199

RESUMO

Plants are an excellent source of bioactive peptides, often with disulfide bonds and/or a cyclic backbone. While focus has predominantly been directed at disulfide-rich peptides, a large family of small, cyclic plant peptides lacking disulfide bonds, known as orbitides, has been relatively ignored. A recently discovered subfamily of orbitides is the PawL-derived peptides (PLPs), produced during the maturation of precursors for seed storage albumins. Although their evolutionary origins have been dated, in-depth exploration of the family's structural characteristics and potential bioactivities remains to be conducted. Here we present an extensive and systematic characterization of the PLP family. Nine PLPs were chosen and prepared by solid phase peptide synthesis. Their structural features were studied using solution NMR spectroscopy, and seven were found to possess regions of backbone order. Ordered regions consist of ß-turns, with some PLPs adopting two well-defined ß-turns within sequences as short as seven residues, which are largely the result of side chain interactions. Our data highlight that the sequence diversity within this family results in equally diverse structures. None of these nine PLPs showed antibacterial or antifungal activity.


Assuntos
Peptídeos Cíclicos/química , Anti-Infecciosos/farmacologia , Espectroscopia de Ressonância Magnética , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Técnicas de Síntese em Fase Sólida
3.
Plant J ; 98(6): 988-999, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30790358

RESUMO

Plant asparaginyl endopeptidases (AEPs) are expressed as inactive zymogens that perform maturation of seed storage protein upon cleavage-dependent autoactivation in the low-pH environment of storage vacuoles. The AEPs have attracted attention for their macrocyclization reactions, and have been classified as cleavage or ligation specialists. However, we have recently shown that the ability of AEPs to produce either cyclic or acyclic products can be altered by mutations to the active site region, and that several AEPs are capable of macrocyclization given favorable pH conditions. One AEP extracted from Clitoria ternatea seeds (butelase 1) is classified as a ligase rather than a protease, presenting an opportunity to test for loss of cleavage activity. Here, making recombinant butelase 1 and rescuing an Arabidopsis thaliana mutant lacking AEP, we show that butelase 1 retains cleavage functions in vitro and in vivo. The in vivo rescue was incomplete, consistent with some trade-off for butelase 1 specialization toward macrocyclization. Its crystal structure showed an active site with only subtle differences from cleaving AEPs, suggesting the many differences in its peptide-binding region are the source of its efficient macrocyclization. All considered, it seems that either butelase 1 has not fully specialized or a requirement for autocatalytic cleavage is an evolutionary constraint upon macrocyclizing AEPs.


Assuntos
Arabidopsis/enzimologia , Clitoria/enzimologia , Cisteína Endopeptidases/metabolismo , Ligases/metabolismo , Arabidopsis/genética , Evolução Biológica , Catálise , Domínio Catalítico , Clitoria/genética , Cristalografia por Raios X , Ciclização , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Ligases/química , Ligases/genética , Modelos Estruturais , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo
4.
J Nat Prod ; 83(4): 1167-1173, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32239926

RESUMO

Small, cyclic peptides are reported to have many bioactivities. In bacteria and fungi, they can be made by nonribosomal peptide synthetases, but in plants they are exclusively ribosomal. Cyclic peptides from the Annona genus possess cytotoxic and anti-inflammatory activities, but their biosynthesis is unknown. The medicinal soursop plant, Annona muricata, contains annomuricatins A (cyclo-PGFVSA) and B (cyclo-PNAWLGT). Here, using de novo transcriptomics and tandem mass spectrometry, we identify a suite of short transcripts for precursor proteins for 10 validated annomuricatins, 9 of which are novel. In their precursors, annomuricatins are preceded by an absolutely conserved Glu and each peptide sequence has a conserved proto-C-terminal Pro, revealing parallels with the segetalin orbitides from the seed of Vaccaria hispanica, which are processed through ligation by a prolyl oligopeptidase in a transpeptidation reaction.


Assuntos
Annona/química , Anti-Inflamatórios/química , Peptídeos Cíclicos/síntese química , Extratos Vegetais/química , Sequência de Aminoácidos , Anti-Inflamatórios/análise , Estrutura Molecular , Peptídeos Cíclicos/química , Folhas de Planta/química , Plantas Medicinais
5.
J Nat Prod ; 83(10): 3030-3040, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32997497

RESUMO

Plants and their seeds have been shown to be a rich source of cystine-stabilized peptides. Recently a new family of plant seed peptides whose sequences are buried within precursors for seed storage vicilins was identified. Members of this Vicilin-Buried Peptide (VBP) family are found in distantly related plant species including the monocot date palm, as well as dicotyledonous species like pumpkin and sesame. Genetic evidence for their widespread occurrence indicates that they are of ancient origin. Limited structural studies have been conducted on VBP family members, but two members have been shown to adopt a helical hairpin fold. We present an extensive characterization of VBPs using solution NMR spectroscopy, to better understand their structural features. Four peptides were produced by solid phase peptide synthesis and shown to favor a helix-loop-helix hairpin fold, as a result of the I-IV/II-III ladderlike connectivity of their disulfide bonds. Interhelical interactions, including hydrophobic contacts and salt bridges, are critical for the fold stability and control the angle at which the antiparallel α-helices interface. Activities reported for VBPs include trypsin inhibitory activity and inhibition of ribosomal function; however, their diverse structural features despite a common fold suggest that additional bioactivities yet to be revealed are likely.


Assuntos
Dobramento de Proteína , Proteínas de Armazenamento de Sementes/química , Sequência de Aminoácidos , Dissulfetos/química , Sequências Hélice-Alça-Hélice , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice , Proteínas de Armazenamento de Sementes/síntese química , Proteínas de Armazenamento de Sementes/farmacologia , Inibidores da Tripsina/farmacologia
6.
J Proteome Res ; 18(11): 4065-4071, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566373

RESUMO

Homodetic cyclic peptides have aroused interest because of their pharmacological potential. Sequencing cyclic peptides is difficult-Edman degradation is not possible as there is no N-terminus, NMR requires quantities that are hard to gather from native samples, and tandem mass spectrometry data are difficult to interpret due to the peptide ring opening at multiple points. Sequencing can be simplified by cleaving the peptide ring at a specific peptide bond. Partial acid hydrolysis is a possible solution, but to date sequencing by this method has only been demonstrated for linear peptides and cyclotides, which are larger cyclic peptides (∼30 amino acids) with three disulfide bonds. This study tests whether partial acid hydrolysis could be used to aid sequencing of Cys-less cyclic peptides with fewer than ten amino acid residues. We show that, with the right combination of temperature and acid, ring cleavage occurs and offers relatively simple MS/MS spectra amenable to sequencing. We describe how this method was used in our recent study in which we sequenced annomuricatin D (cyclo-GHSIFPPIP) from seeds of the soursop, Annona muricata. We found that orbitides can be linearized for MS/MS sequencing by incubation with 1.2 M HCl at 90 °C for 15-20 min. This fast, economical sequencing method will be useful to those studying small cyclic peptides lacking disulfide bonds, which are commonly found in many organisms, especially plants.


Assuntos
Ciclotídeos/análise , Peptídeos Cíclicos/análise , Peptídeos/análise , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Ácidos/química , Annona/química , Ciclotídeos/química , Hidrólise , Peptídeos/química , Peptídeos Cíclicos/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Reprodutibilidade dos Testes , Temperatura
7.
J Nat Prod ; 82(8): 2152-2158, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31392883

RESUMO

Cyclic peptides are abundant in plants and have attracted interest due to their bioactivity and potential as drug scaffolds. Orbitides are head-to-tail cyclic peptides that are ribosomally synthesized, post-translationally modified, and lack disulfide bonds. All known orbitides contain 5-12 amino acid residues. Here we describe PLP-53, a novel orbitide from the seed of Ratibida columnifera. PLP-53 consists of 16 amino acids, four residues larger than any known orbitide. NMR structural studies showed that, compared to previously characterized orbitides, PLP-53 is more flexible and, under the studied conditions, did not adopt a single ordered conformation based on analysis of NOEs and chemical shifts.


Assuntos
Aminoácidos/análise , Peptídeos Cíclicos/isolamento & purificação , Ratibida/embriologia , Sementes/química , Sequência de Aminoácidos , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Conformação Proteica
8.
Mol Biol Evol ; 34(6): 1505-1516, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333296

RESUMO

The de novo evolution of genes and the novel proteins they encode has stimulated much interest in the contribution such innovations make to the diversity of life. Most research on this de novo evolution focuses on transcripts, so studies on the biochemical steps that can enable completely new proteins to evolve and the time required to do so have been lacking. Sunflower Preproalbumin with SFTI-1 (PawS1) is an unusual albumin precursor because in addition to producing albumin it also yields a potent, bicyclic protease-inhibitor called SunFlower Trypsin Inhibitor-1 (SFTI-1). Here, we show how this inhibitor peptide evolved stepwise over tens of millions of years. To trace the origin of the inhibitor peptide SFTI-1, we assembled seed transcriptomes for 110 sunflower relatives whose evolution could be resolved by a chronogram, which allowed dates to be estimated for the various stages of molecular evolution. A genetic insertion event in an albumin precursor gene ∼45 Ma introduced two additional cleavage sites for protein maturation and conferred duality upon PawS1-Like genes such that they also encode a small buried macrocycle. Expansion of this region, including two Cys residues, enlarged the peptide ∼34 Ma and made the buried peptides bicyclic. Functional specialization into a protease inhibitor occurred ∼23 Ma. These findings document the evolution of a novel peptide inside a benign region of a pre-existing protein. We illustrate how a novel peptide can evolve without de novo gene evolution and, critically, without affecting the function of what becomes the protein host.


Assuntos
Helianthus/genética , Peptídeos Cíclicos/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Evolução Biológica , Evolução Molecular , Modelos Moleculares , Mutagênese Insercional/genética , Peptídeos , Peptídeos Cíclicos/metabolismo , Filogenia , Pré-Albumina/genética , Precursores de Proteínas/genética , Sementes/genética
9.
Plant J ; 85(4): 532-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764122

RESUMO

The pentatricopeptide repeat (PPR) proteins form one of the largest protein families in land plants. They are characterised by tandem 30-40 amino acid motifs that form an extended binding surface capable of sequence-specific recognition of RNA strands. Almost all of them are post-translationally targeted to plastids and mitochondria, where they play important roles in post-transcriptional processes including splicing, RNA editing and the initiation of translation. A code describing how PPR proteins recognise their RNA targets promises to accelerate research on these proteins, but making use of this code requires accurate definition and annotation of all of the various nucleotide-binding motifs in each protein. We have used a structural modelling approach to define 10 different variants of the PPR motif found in plant proteins, in addition to the putative deaminase motif that is found at the C-terminus of many RNA-editing factors. We show that the super-helical RNA-binding surface of RNA-editing factors is potentially longer than previously recognised. We used the redefined motifs to develop accurate and consistent annotations of PPR sequences from 109 genomes. We report a high error rate in PPR gene models in many public plant proteomes, due to gene fusions and insertions of spurious introns. These consistently annotated datasets across a wide range of species are valuable resources for future comparative genomics studies, and an essential pre-requisite for accurate large-scale computational predictions of PPR targets. We have created a web portal (http://www.plantppr.com) that provides open access to these resources for the community.


Assuntos
Embriófitas/genética , Modelos Estruturais , Proteínas de Plantas/química , Edição de RNA/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Embriófitas/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Transporte Proteico , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência
10.
Biopolymers ; 106(6): 806-817, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27352920

RESUMO

A new family of small plant peptides was recently described and found to be widespread throughout the Millereae and Heliantheae tribes of the sunflower family Asteraceae. These peptides originate from the post-translational processing of unusual seed-storage albumin genes, and have been termed PawS-derived peptides (PDPs). The prototypic family member is a 14-residue cyclic peptide with potent trypsin inhibitory activity named SunFlower Trypsin Inhibitor (SFTI-1). In this study we present the features of three new PDPs discovered in the seeds of the sunflower species Zinnia haageana by a combination of de novo transcriptomics and liquid chromatography-mass spectrometry. Two-dimensional solution NMR spectroscopy was used to elucidate their structural characteristics. All three Z. haageana peptides have well-defined folds with a head-to-tail cyclized peptide backbone and a single disulfide bond. Although two possess an anti-parallel ß-sheet structure, like SFTI-1, the Z. haageana peptide PDP-21 has a more irregular backbone structure. Despite structural similarities with SFTI-1, PDP-20 was not able to inhibit trypsin, thus the functional roles of these peptides is yet to be discovered. Defining the structural features of the small cyclic peptides found in the sunflower family will be useful for guiding the exploitation of these peptides as scaffolds for grafting and protein engineering applications.


Assuntos
Asteraceae/química , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Proteínas de Armazenamento de Sementes/química , Peptídeos Cíclicos/isolamento & purificação , Estrutura Secundária de Proteína , Proteínas de Armazenamento de Sementes/isolamento & purificação
11.
Plant Commun ; 3(4): 100322, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605193

RESUMO

Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds, as well as regulatory barriers. Of the known herbicide modes of action, 7,8-dihydropterin synthase (DHPS), which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics, and although it is still in widespread use, asulam has faced regulatory scrutiny. With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. Here we solve a 2.3 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), and we reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate that asulam and the antibiotic sulfamethoxazole have herbicidal as well as antibacterial activity, and we explore the structural basis of their potency by modeling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and indicate that pharmacokinetic or delivery differences between plants and microbes might be the best ways to safeguard this mode of action.


Assuntos
Arabidopsis , Herbicidas , Antibacterianos/química , Antibacterianos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Carbamatos , Di-Hidropteroato Sintase/química , Di-Hidropteroato Sintase/genética , Di-Hidropteroato Sintase/metabolismo , Herbicidas/farmacologia , Sulfonamidas/química
12.
J Antibiot (Tokyo) ; 75(9): 483-490, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35882958

RESUMO

Amycolatopsis sp. MST-135876 was isolated from soil collected from the riverbank of El Pont de Suert, Catalonia, Spain. Cultivation of MST-135876 on a range of media led to the discovery of a previously unreported dichlorinated cyclic hexapeptide, suertide A (D-Ser, 5-Cl-D-Trp, 6-Cl-D-Trp, L-Ile, D-Val, D-Glu), featuring an unprecedented pair of adjacent 5/6-chlorotryptophan residues. Supplementing the growth medium with KBr resulted in production of the mono- and dibrominated analogues suertides B and C, respectively. Suertides A-C displayed selective activity against Bacillus subtilis (MIC 1.6 µg ml-1) and Staphylococcus aureus (MIC 3.1, 6.3, and 12.5 µg ml-1, respectively), while suertides A and B showed appreciable activity against methicillin-resistant S. aureus (MIC 1.6 and 6.3 µg ml-1, respectively).


Assuntos
Amycolatopsis , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus
13.
RSC Chem Biol ; 2(6): 1682-1691, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34977583

RESUMO

Head-to-tail cyclic and disulfide-rich peptides are natural products with applications in drug design. Among these are the PawS-Derived Peptides (PDPs) produced in seeds of the daisy plant family. PDP-23 is a unique member of this class in that it is twice the typical size and adopts two ß-hairpins separated by a hinge region. The ß-hairpins, both stabilised by a single disulfide bond, fold together into a V-shaped tertiary structure creating a hydrophobic core. In water two PDP-23 molecules merge their hydrophobic cores to form a square prism quaternary structure. Here, we synthesised PDP-23 and its enantiomer comprising d-amino acids and achiral glycine, which allowed us to confirm these solution NMR structural data by racemic crystallography. Furthermore, we discovered the related PDP-24. NMR analysis showed that PDP-24 does not form a dimeric structure and it has poor water solubility, but in less polar solvents adopts near identical secondary and tertiary structure to PDP-23. The natural role of these peptides in plants remains enigmatic, as we did not observe any antimicrobial or insecticidal activity. However, the plasticity of these larger PDPs and their ability to change structure under different conditions make them appealing peptide drug scaffolds.

14.
Chem Sci ; 12(19): 6670-6683, 2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-34040741

RESUMO

Head-to-tail cyclized peptides are intriguing natural products with unusual properties. The PawS-Derived Peptides (PDPs) are ribosomally synthesized as part of precursors for seed storage albumins in species of the daisy family, and are post-translationally excised and cyclized during proteolytic processing. Here we report a PDP twice the typical size and with two disulfide bonds, identified from seeds of Zinnia elegans. In water, synthetic PDP-23 forms a unique dimeric structure in which two monomers containing two ß-hairpins cross-clasp and enclose a hydrophobic core, creating a square prism. This dimer can be split by addition of micelles or organic solvent and in monomeric form PDP-23 adopts open or closed V-shapes, exposing different levels of hydrophobicity dependent on conditions. This chameleonic character is unusual for disulfide-rich peptides and engenders PDP-23 with potential for cell delivery and accessing novel targets. We demonstrate this by conjugating a rhodamine dye to PDP-23, creating a stable, cell-penetrating inhibitor of the P-glycoprotein drug efflux pump.

15.
ACS Chem Biol ; 14(5): 979-993, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30973714

RESUMO

New proteins can evolve by duplication and divergence or de novo, from previously noncoding DNA. A recently observed mechanism is for peptides to evolve within a "host" protein and emerge by proteolytic processing. The first examples of such interstitial peptides were ones hosted by precursors for seed storage albumin. Interstitial peptides have also been observed in precursors for seed vicilins, but current evidence for vicilin-buried peptides (VBPs) is limited to seeds of the broadleaf plants pumpkin and macadamia. Here, an extensive sequence analysis of vicilin precursors suggested that peptides buried within the N-terminal region of preprovicilins are widespread and truly ancient. Gene sequences indicative of interstitial peptides were found in species from Amborellales to eudicots and include important grass and legume crop species. We show the first protein evidence for a monocot VBP in date palm seeds as well as protein evidence from other crops including the common tomato, sesame and pumpkin relatives, cucumber, and the sponge loofah ( Luffa aegyptiaca). Their excision was consistent with asparaginyl endopeptidase-mediated maturation, and sequences were confirmed by tandem mass spectrometry. Our findings suggest that the family is large and ancient and that based on the NMR solution structures for loofah Luffin P1 and tomato VBP-8, VBPs adopt a helical hairpin fold stapled by two internal disulfide bonds. The first VBPs characterized were a protease inhibitor, antimicrobials, and a ribosome inactivator. The age and evolutionary retention of this peptide family suggest its members play important roles in plant biology.


Assuntos
Proteínas de Armazenamento de Sementes/química , Sequência de Aminoácidos , Proteólise , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
16.
Plant Direct ; 2(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30417166

RESUMO

Orbitides are cyclic ribosomally-synthesized and post-translationally modified peptides (RiPPs) from plants; they consist of standard amino acids arranged in an unbroken chain of peptide bonds. These cyclic peptides are stable and range in size and topologies making them potential scaffolds for peptide drugs; some display valuable biological activities. Recently two orbitides whose sequences were buried in those of seed storage albumin precursors were said to represent the first observable step in the evolution of larger and hydrophilic bicyclic peptides. Here, guided by transcriptome data, we investigated peptide extracts of 40 species specifically for the more hydrophobic orbitides and confirmed 44 peptides by tandem mass spectrometry, as well as obtaining solution structures for four of them by NMR. Acquiring transcriptomes from the phylogenetically important Corymboideae family confirmed the precursor genes for the peptides (called PawS1-Like or PawL1) are confined to the Asteroideae, a subfamily of the huge plant family Asteraceae. To be confined to the Asteroideae indicates these peptides arose during the Eocene epoch around 45 Mya. Unlike other orbitides, all PawL-derived Peptides contain an Asp residue, needed for processing by asparaginyl endopeptidase. This study has revealed what is likely to be a very large new family of orbitides, uniquely buried alongside albumin and processed by asparaginyl endopeptidase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA