Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 122, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287261

RESUMO

BACKGROUND: Cancers exhibit complex transcriptomes with aberrant splicing that induces isoform-level differential expression compared to non-diseased tissues. Transcriptomic profiling using short-read sequencing has utility in providing a cost-effective approach for evaluating isoform expression, although short-read assembly displays limitations in the accurate inference of full-length transcripts. Long-read RNA sequencing (Iso-Seq), using the Pacific Biosciences (PacBio) platform, can overcome such limitations by providing full-length isoform sequence resolution which requires no read assembly and represents native expressed transcripts. A constraint of the Iso-Seq protocol is due to fewer reads output per instrument run, which, as an example, can consequently affect the detection of lowly expressed transcripts. To address these deficiencies, we developed a concatenation workflow, PacBio Full-Length Isoform Concatemer Sequencing (PB_FLIC-Seq), designed to increase the number of unique, sequenced PacBio long-reads thereby improving overall detection of unique isoforms. In addition, we anticipate that the increase in read depth will help improve the detection of moderate to low-level expressed isoforms. RESULTS: In sequencing a commercial reference (Spike-In RNA Variants; SIRV) with known isoform complexity we demonstrated a 3.4-fold increase in read output per run and improved SIRV recall when using the PB_FLIC-Seq method compared to the same samples processed with the Iso-Seq protocol. We applied this protocol to a translational cancer case, also demonstrating the utility of the PB_FLIC-Seq method for identifying differential full-length isoform expression in a pediatric diffuse midline glioma compared to its adjacent non-malignant tissue. Our data analysis revealed increased expression of extracellular matrix (ECM) genes within the tumor sample, including an isoform of the Secreted Protein Acidic and Cysteine Rich (SPARC) gene that was expressed 11,676-fold higher than in the adjacent non-malignant tissue. Finally, by using the PB_FLIC-Seq method, we detected several cancer-specific novel isoforms. CONCLUSION: This work describes a concatenation-based methodology for increasing the number of sequenced full-length isoform reads on the PacBio platform, yielding improved discovery of expressed isoforms. We applied this workflow to profile the transcriptome of a pediatric diffuse midline glioma and adjacent non-malignant tissue. Our findings of cancer-specific novel isoform expression further highlight the importance of long-read sequencing for characterization of complex tumor transcriptomes.


Assuntos
Glioma , Transcriptoma , Humanos , Criança , Perfilação da Expressão Gênica/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Brain ; 146(1): 387-404, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35802027

RESUMO

Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-ß-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Microcefalia , Células-Tronco Neurais , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Deficiência Intelectual/genética , Organoides/metabolismo , Proteínas do Citoesqueleto , Fatores de Transcrição/metabolismo
3.
Genes Chromosomes Cancer ; 62(1): 17-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35801295

RESUMO

Next-generation sequencing (NGS) assays can sensitively detect somatic variation, and increasingly can enable the identification of complex structural rearrangements. A subset of infantile spindle cell sarcomas, particularly congenital mesoblastic nephromas with classic or mixed histology, have structural rearrangement in the form of internal tandem duplications (ITD) involving EGFR. We performed prospective analysis to identify EGFR ITD through clinical or research studies, as well as retrospective analysis to quantify the frequency of EGFR ITD in pediatric sarcomas. Within our institution, three tumors with EGFR ITD were prospectively identified, all occurring in patients less than 1 year of age at diagnosis, including two renal tumors and one mediastinal soft tissue tumor. These three cases exhibited both cellular and mixed cellular and classic histology. All patients had no evidence of disease progression off therapy, despite incomplete resection. To extend our analysis and quantify the frequency of EGFR ITD in pediatric sarcomas, we retrospectively analyzed a cohort of tumors (n = 90) that were previously negative for clinical RT-PCR-based fusion testing. We identified EGFR ITD in three analyzed cases, all in patients less than 1 year of age (n = 18; 3/18, 17%). Here we expand the spectrum of tumors with EGFR ITD to congenital soft tissue tumors and report an unusual example of an EGFR ITD in a tumor with cellular congenital mesoblastic nephroma histology. We also highlight the importance of appropriate test selection and bioinformatic analysis for identification of this genomic alteration that is unexpectedly common in congenital and infantile spindle cell tumors.


Assuntos
Neoplasias Renais , Nefroma Mesoblástico , Sarcoma , Neoplasias de Tecidos Moles , Recém-Nascido , Criança , Humanos , Estudos Retrospectivos , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/congênito , Nefroma Mesoblástico/patologia , Neoplasias de Tecidos Moles/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Sarcoma/genética , Sarcoma/patologia , Receptores ErbB/genética
4.
Am J Transplant ; 22(10): 2306-2322, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35671112

RESUMO

Human cytomegalovirus (HCMV) infection is associated with renal allograft failure. Allograft damage in animal models is accelerated by CMV-induced T helper 17 (Th17) cell infiltrates. However, the mechanisms whereby CMV promotes Th17 cell-mediated pathological organ inflammation are uncharacterized. Here we demonstrate that murine CMV (MCMV)-induced intragraft Th17 cells have a Th1/17 phenotype co-expressing IFN-γ and/or TNF-α, but only a minority of these cells are MCMV specific. Instead, MCMV promotes intragraft expression of CCL20 and CXCL10, which are associated with recruitment of CCR6+ CXCR3+ Th17 cells. MCMV also enhances Th17 cell infiltrates after ischemia-reperfusion injury, independent of allogeneic responses. Pharmacologic inhibition of the Th17 cell signature cytokine, IL-17A, ameliorates MCMV-associated allograft damage without increasing intragraft viral loads or reducing MCMV-specific Th1 cell infiltrates. Clinically, HCMV DNAemia is associated with higher serum IL-17A among renal transplant patients with acute rejection, linking HCMV reactivation with Th17 cell cytokine expression. In summary, CMV promotes allograft damage via cytokine-mediated Th1/17 cell recruitment, which may be pharmacologically targeted to mitigate graft injury while preserving antiviral T cell immunity.


Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Muromegalovirus , Nefrite , Insuficiência Renal , Aloenxertos/metabolismo , Animais , Antivirais , Citocinas/metabolismo , Humanos , Inflamação/patologia , Interleucina-17/metabolismo , Transplante de Rim/efeitos adversos , Camundongos , Insuficiência Renal/complicações , Células Th1 , Células Th17 , Fator de Necrose Tumoral alfa/metabolismo
5.
Epilepsia ; 63(8): 1981-1997, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687047

RESUMO

OBJECTIVE: Epilepsy-associated developmental lesions, including malformations of cortical development and low-grade developmental tumors, represent a major cause of drug-resistant seizures requiring surgical intervention in children. Brain-restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. METHODS: We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high-depth targeted DNA sequencing. RESULTS: We uncovered candidate disease-causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 (SLC35A2) and mechanistic target of rapamycin kinase (MTOR) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen-activated protein kinase (MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [FGFR1], FGFR2, B-raf proto-oncogene, serine/threonine kinase [BRAF], and KRAS proto-oncogene, GTPase [KRAS]) was associated with low-grade epilepsy-associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which accounted for more than one-half of epilepsy-associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease-causing variants in genes not yet associated with focal cortical dysplasia. SIGNIFICANCE: These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical , Encéfalo/patologia , Criança , Epilepsia/patologia , Humanos , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Brain ; 144(10): 2971-2978, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34048549

RESUMO

Phosphatase and tensin homologue (PTEN) regulates cell growth and survival through inhibition of the mammalian target of rapamycin (MTOR) signalling pathway. Germline genetic variation of PTEN is associated with autism, macrocephaly and PTEN hamartoma tumour syndromes. The effect of developmental PTEN somatic mutations on nervous system phenotypes is not well understood, although brain somatic mosaicism of MTOR pathway genes is an emerging cause of cortical dysplasia and epilepsy in the paediatric population. Here we report two somatic variants of PTEN affecting a single patient presenting with intractable epilepsy and hemimegalencephaly that varied in clinical severity throughout the left cerebral hemisphere. High-throughput sequencing analysis of affected brain tissue identified two somatic variants in PTEN. The first variant was present in multiple cell lineages throughout the entire hemisphere and associated with mild cerebral overgrowth. The second variant was restricted to posterior brain regions and affected the opposite PTEN allele, resulting in a segmental region of more severe malformation, and the only neurons in which it was found by single-nuclei RNA-sequencing had a unique disease-related expression profile. This study reveals brain mosaicism of PTEN as a disease mechanism of hemimegalencephaly and furthermore demonstrates the varying effects of single- or bi-allelic disruption of PTEN on cortical phenotypes.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Variação Genética/genética , Hemimegalencefalia/diagnóstico por imagem , Hemimegalencefalia/genética , Mutação/genética , PTEN Fosfo-Hidrolase/genética , Córtex Cerebral/cirurgia , Hemimegalencefalia/cirurgia , Humanos , Lactente , Masculino
7.
Genes Chromosomes Cancer ; 60(8): 577-585, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33893698

RESUMO

Oncogenesis in PLAG1-rearranged tumors often results from PLAG1 transcription factor overexpression driven by promoter-swapping between constitutively expressed fusion partners. PLAG1-rearranged tumors demonstrate diverse morphologies. This study adds to this morphologic heterogeneity by introducing two tumors with PLAG1 rearrangements that display distinct histologic features. The first arose in the inguinal region of a 3-year-old, appeared well-circumscribed with a multinodular pattern, and harbored two fusions: ZFHX4-PLAG1 and CHCHD7-PLAG1. The second arose in the pelvic cavity of a 15-year-old girl, was extensively infiltrative and vascularized with an adipocytic component, and demonstrated a COL3A1-PLAG1 fusion. Both showed low-grade cytomorphology, scarce mitoses, no necrosis, and expression of CD34 and desmin. The ZFHX4-/CHCHD7-PLAG1-rearranged tumor showed no evidence of recurrence after 5 months. By contrast, the COL3A1-PLAG1-rearranged tumor quickly recurred following primary excision with positive margins; subsequent re-excision with adjuvant chemotherapy resulted in no evidence of recurrence after 2 years. While both tumors show overlap with benign and malignant fibroblastic and fibrovascular neoplasms, they also display divergent features. These cases highlight the importance of appropriate characterization in soft tissue tumors with unusual clinical and histologic characteristics.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias de Tecidos Moles/genética , Adolescente , Pré-Escolar , Colágeno Tipo III/genética , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Proteínas/genética , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/cirurgia , Neoplasias de Tecidos Moles/terapia , Fatores de Transcrição/genética
8.
Genes Chromosomes Cancer ; 60(9): 640-646, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041825

RESUMO

Gastroblastomas are rare tumors with a biphasic epithelioid/spindle cell morphology that typically present in early adulthood and have recurrent MALAT1-GLI1 fusions. We describe an adolescent patient with Wiskott-Aldrich syndrome who presented with a large submucosal gastric tumor with biphasic morphology. Despite histologic features consistent with gastroblastoma, a MALAT1-GLI1 fusion was not found in this patient's tumor; instead, comprehensive molecular profiling identified a novel EWSR1-CTBP1 fusion and no other significant genetic alterations. The tumor also overexpressed NOTCH and FGFR by RNA profiling. The novel fusion and expression profile suggest a role for epithelial-mesenchymal transition in this tumor, with potential implications for the pathogenesis of biphasic gastric tumors such as gastroblastoma.


Assuntos
Oxirredutases do Álcool/genética , Carcinoma/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fusão Oncogênica/genética , Proteína EWS de Ligação a RNA/genética , Neoplasias Gástricas/genética , Adolescente , Idade de Início , Carcinoma/patologia , Humanos , Masculino , Neoplasias Gástricas/patologia
9.
BMC Genomics ; 22(1): 872, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863095

RESUMO

BACKGROUND: Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. RESULTS: Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a "known fusion list" prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient's medical record, both known and novel fusions provided medically meaningful information. CONCLUSIONS: The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies.


Assuntos
Genoma , Neoplasias , Criança , Genômica , Humanos , Neoplasias/genética , Análise de Sequência de DNA , Análise de Sequência de RNA
10.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839173

RESUMO

The facultative intracellular bacterial pathogen Francisella tularensis is the causative agent of tularemia in humans and animals. Gram-negative bacteria utilize two-component regulatory systems (TCS) to sense and respond to their changing environment. No classical, tandemly arranged sensor kinase and response regulator TCS genes exist in the human virulent Francisella tularensis subsp. tularensis, but orphaned members are present. PmrA is an orphan response regulator responsible for intramacrophage growth and virulence; however, the regulation of PmrA activity is not understood. We and others have shown that PmrA represses the expression of priM, described to encode an antivirulence determinant. By screening a mutant library for increased priM promoter activity, we identified the sensor kinase homolog QseC as an upstream regulator of priM expression, and this regulation is in part dependent upon the aspartate phosphorylation site of PmrA (D51). Several examined environmental signals, including epinephrine, which is reported to activate QseC in other bacteria, do not affect priM expression in a manner dependent on PmrA. Intramacrophage survival assays also question the finding that PriM is an antivirulence factor. Thus, these data suggest that the PmrA-regulated gene priM is modulated by the QseC-PmrA (QseB) TCS in FrancisellaIMPORTANCE The disease tularemia is caused by the highly infectious Gram-negative pathogen Francisella tularensis This bacterium encodes few regulatory factors (e.g., two-component systems [TCS]). PmrA, required for intramacrophage survival and virulence in the mouse model, is encoded by an orphan TCS response regulator gene. It is unclear how PmrA is responsive to environmental signals to regulate loci, including the PmrA-repressed gene priM We identify an orphan sensor kinase (QseC) that is required for priM repression and further explore both environmental signals that might regulate the QseC-PmrA TCS and the function of PriM.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella/enzimologia , Histidina Quinase/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Francisella/patogenicidade , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Virulência
11.
J Bacteriol ; 201(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30936374

RESUMO

Typhoid fever is caused primarily by Salmonella enterica serovar Typhi. Approximately 3% to 5% of individuals infected with S Typhi become chronic carriers with the gallbladder (GB) as the site of persistence, as gallstones within the GB are a platform on which the bacteria form a biofilm. S Typhi is a human-restricted pathogen; therefore, asymptomatic carriers represent a critical reservoir for further spread of disease. To examine the dynamics of the Salmonella biofilm during chronic carriage, the human gallstone (GS) environment was simulated by growing biofilms on cholesterol-coated surfaces in the presence of bile, and the transcriptional profile was determined. Some of the most highly activated genes corresponded to the curli fimbria operon, with the major structural component csgA upregulated >80-fold. The curli protein polymer is a major component of the extracellular matrix (ECM) in Salmonella biofilms. The upregulation of curli fimbriae by human bile was validated through reverse transcription-quantitative PCR (qRT-PCR), microscopy, and Western blotting. Interestingly, this activation appears human specific, as qRT-PCR showed repression of csgA in biofilms grown in mouse or ox bile. Comparative transcriptional studies of the two divergent csg operons suggest an early activation of both operons in minimal medium complemented with glucose that quickly diminishes as the biofilm matures. However, in the presence of human bile, there is a modest activation of both operons that steadily increases as the biofilm matures. Understanding the effect of the GB environment on key biofilm-associated factors can help target antibiofilm therapeutics or other preventative strategies to eradicate chronic carriage.IMPORTANCE Typhoid fever is caused by Salmonella enterica serovar Typhi, and 3% to 5% of patients become chronic gallbladder (GB) carriers (also known as "Typhoid Marys"). We have previously demonstrated a role for Salmonella biofilm formation on gallstones as a primary mechanism of carriage. In this study, we found that the important biofilm extracellular matrix component curli fimbria is induced in an in vitro human GB model system. This induction is specific to human bile and increases as the biofilm matures. We also found that the biofilm and curli regulator CsgD play a key role in this observed induction. This work further enhances our understanding biofilm-mediated chronic carriage and provides a potential target for eliminating persistent GB infection by S Typhi.


Assuntos
Bile , Fímbrias Bacterianas/metabolismo , Salmonella typhi/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Meios de Cultura , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos
13.
iScience ; 27(1): 108631, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188512

RESUMO

Idiopathic nephrotic syndrome (NS) is a common glomerular disease. Although glucocorticoids (GC) are the primary treatment, the PPARγ agonist pioglitazone (Pio) also reduces proteinuria in patients with NS and directly protects podocytes from injury. Because both drugs reduce proteinuria, we hypothesized these effects result from overlapping transcriptional patterns. Systems biology approaches compared glomerular transcriptomes from rats with PAN-induced NS treated with GC vs. Pio and identified 29 commonly regulated genes-of-interest, primarily involved in extracellular matrix (ECM) remodeling. Correlation with clinical idiopathic NS patient datasets confirmed glomerular ECM dysregulation as a potential mechanism of injury. Cellular deconvolution in silico revealed GC- and Pio-induced amelioration of altered genes primarily within podocytes and mesangial cells. While validation studies are indicated, these analyses identified molecular pathways involved in the early stages of NS (prior to scarring), suggesting that targeting glomerular ECM dysregulation may enable a future non-immunosuppressive approach for proteinuria reduction in idiopathic NS.

14.
J Mol Diagn ; 24(12): 1292-1306, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191838

RESUMO

Genomic profiling using short-read sequencing has utility in detecting disease-associated variation in both DNA and RNA. However, given the frequent occurrence of structural variation in cancer, molecular profiling using long-read sequencing improves the resolution of such events. For example, the Pacific Biosciences long-read RNA-sequencing (Iso-Seq) transcriptome protocol provides full-length isoform characterization, discernment of allelic phasing, and isoform discovery, and identifies expressed fusion partners. The Pacific Biosciences Fusion and Long Isoform Pipeline (PB_FLIP) incorporates a suite of RNA-sequencing software analysis tools and scripts to identify expressed fusion partners and isoforms. In addition, sequencing of a commercial reference (Spike-In RNA Variants) with known isoform complexity was performed and demonstrated high recall of the Iso-Seq and PB_FLIP workflow to benchmark our protocol and analysis performance. This study describes the utility of Iso-Seq and PB_FLIP analysis in improving deconvolution of complex structural variants and isoform detection within an institutional pediatric and adolescent/young adult translational cancer research cohort. The exemplar case studies demonstrate that Iso-Seq and PB_FLIP discover novel expressed fusion partners, resolve complex intragenic alterations, and discriminate between allele-specific expression profiles.


Assuntos
Neoplasias , Transcriptoma , Adolescente , Criança , Humanos , Processamento Alternativo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Isoformas de Proteínas/genética , RNA/genética , Análise de Sequência de RNA , Adulto Jovem
15.
iScience ; 24(8): 102867, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34386729

RESUMO

Recent characterizations of pioneer transcription factors provide insights into their structures and patterns of chromatin recognition associated with their roles in cell fate commitment and transformation. Intersecting with these basic science concepts, identification of pioneer factors (PFs) fused together as driver translocations in childhood cancers raises questions of whether these fusions retain the fundamental ability to invade repressed chromatin, consistent with their monomeric PF constituents. This study defines the cellular and chromatin localization of PAX3-FOXO1, an oncogenic driver of childhood rhabdomyosarcoma (RMS), derived from a fusion of PFs. To quantitatively define its chromatin-targeting functions and capacity to drive epigenetic reprogramming, we developed a ChIP-seq workflow with per-cell normalization (pc-ChIP-seq). Our quantitative localization studies address structural variation in RMS genomes and reveal insights into inactive chromatin localization of PAX3-FOXO1. Taken together, our studies are consistent with pioneer function for a driver oncoprotein in RMS, with repressed chromatin binding and nucleosome-motif targeting.

16.
Front Cell Infect Microbiol ; 11: 698146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368016

RESUMO

L-arabinose inducible promoters are commonly used in gene expression analysis. However, nutrient source and availability also play a role in biofilm formation; therefore, L-arabinose metabolism could impact biofilm development. In this study we examined the impact of L-arabinose on Salmonella enterica serovar Typhimurium (S. Typhimurium) biofilm formation. Using mutants impaired for the transport and metabolism of L-arabinose, we showed that L-arabinose metabolism negatively impacts S. Typhimurium biofilm formation in vitro. When L-arabinose metabolism is abrogated, biofilm formation returned to baseline levels. However, without the ability to import extracellular L-arabinose, biofilm formation significantly increased. Using RNA-Seq we identified several gene families involved in these different phenotypes including curli expression, amino acid synthesis, and L-arabinose metabolism. Several individual candidate genes were tested for their involvement in the L-arabinose-mediated biofilm phenotypes, but most played no significant role. Interestingly, in the presence of L-arabinose the diguanylate cyclase gene adrA was downregulated in wild type S. Typhimurium. Meanwhile cyaA, encoding an adenylate cyclase, was downregulated in an L-arabinose transport mutant. Using an IPTG-inducible plasmid to deplete c-di-GMP via vieA expression, we were able to abolish the increased biofilm phenotype seen in the transport mutant. However, the mechanism by which the L-arabinose import mutant forms significantly larger biofilms remains to be determined. Regardless, these data suggest that L-arabinose metabolism influences intracellular c-di-GMP levels and therefore biofilm formation. These findings are important when considering the use of an L-arabinose inducible promoter in biofilm conditions.


Assuntos
Arabinose , Proteínas de Bactérias , Biofilmes , Salmonella typhimurium , Arabinose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico , Regulação Bacteriana da Expressão Gênica , Plasmídeos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
17.
Front Immunol ; 12: 733834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659221

RESUMO

Background: Severe innate immune suppression, termed immunoparalysis, is associated with increased risks of nosocomial infection and mortality in children with septic shock. Currently, immunoparalysis cannot be clinically diagnosed in children, and mechanisms remain unclear. Transcriptomic studies identify subsets of septic children with downregulation of genes within adaptive immune pathways, but assays of immune function have not been performed as part of these studies, and little is known about transcriptomic profiles of children with immunoparalysis. Methods: We performed a nested case-control study to identify differences in RNA expression patterns between children with septic shock with immunoparalysis (defined as lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)α response < 200 pg/ml) vs those with normal LPS-induced TNFα response. Children were enrolled within 48 hours of the onset of septic shock and divided into two groups based on LPS-induced TNFα response. RNA was extracted from whole blood for RNAseq, differential expression analyses using DESeq2 software, and pathway analyses using Ingenuity Pathway Analysis. Results: 32 children were included in analyses. Comparing those with immunoparalysis (n =19) to those with normal TNFα response (n = 13), 2,303 transcripts were differentially expressed with absolute value fold change ≥ 1.5 and false discovery rate ≤ 0.05. The majority of downregulated pathways in children with immunoparalysis were pathways that involved interactions between innate and adaptive immune cells necessary for cell-mediated immunity, crosstalk between dendritic cells and natural killer cells, and natural killer cell signaling pathways. Upregulated pathways included those involved in humoral immunity (T helper cell type 2), corticotropin signaling, platelet activation (GP6 signaling), and leukocyte migration and extravasation. Conclusions: Our study suggests that gene expression data might be useful to identify children with immunoparalysis and identifies several key differentially regulated pathways involved in both innate and adaptive immunity. Our ongoing work in this area aims to dissect interactions between innate and adaptive immunity in septic children and to more fully elucidate patient-specific immunologic pathophysiology to guide individualized immunotherapeutic targets.


Assuntos
Células Dendríticas/fisiologia , Choque Séptico/imunologia , Células Th2/imunologia , Imunidade Adaptativa/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Infecção Hospitalar , Feminino , Perfilação da Expressão Gênica , Humanos , Tolerância Imunológica , Imunidade Inata/genética , Lipopolissacarídeos/imunologia , Masculino , Choque Séptico/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Gigascience ; 10(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33822938

RESUMO

BACKGROUND: The role of synonymous single-nucleotide variants in human health and disease is poorly understood, yet evidence suggests that this class of "silent" genetic variation plays multiple regulatory roles in both transcription and translation. One mechanism by which synonymous codons direct and modulate the translational process is through alteration of the elaborate structure formed by single-stranded mRNA molecules. While tools to computationally predict the effect of non-synonymous variants on protein structure are plentiful, analogous tools to systematically assess how synonymous variants might disrupt mRNA structure are lacking. RESULTS: We developed novel software using a parallel processing framework for large-scale generation of secondary RNA structures and folding statistics for the transcriptome of any species. Focusing our analysis on the human transcriptome, we calculated 5 billion RNA-folding statistics for 469 million single-nucleotide variants in 45,800 transcripts. By considering the impact of all possible synonymous variants globally, we discover that synonymous variants predicted to disrupt mRNA structure have significantly lower rates of incidence in the human population. CONCLUSIONS: These findings support the hypothesis that synonymous variants may play a role in genetic disorders due to their effects on mRNA structure. To evaluate the potential pathogenic impact of synonymous variants, we provide RNA stability, edge distance, and diversity metrics for every nucleotide in the human transcriptome and introduce a "Structural Predictivity Index" (SPI) to quantify structural constraint operating on any synonymous variant. Because no single RNA-folding metric can capture the diversity of mechanisms by which a variant could alter secondary mRNA structure, we generated a SUmmarized RNA Folding (SURF) metric to provide a single measurement to predict the impact of secondary structure altering variants in human genetic studies.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , Códon , Humanos , Nucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Blood Adv ; 5(22): 4605-4618, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34559190

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular processes in cancer and immunity, including innate immune cell development and effector function. However, the transcriptional repertoire through which AHR mediates these effects remains largely unexplored. To elucidate the transcriptional elements directly regulated by AHR in natural killer (NK) cells, we performed RNA and chromatin immunoprecipitation sequencing on NK cells exposed to AHR agonist or antagonist. We show that mature peripheral blood NK cells lack AHR, but its expression is induced by Stat3 during interleukin-21-driven activation and proliferation, coincident with increased NCAM1 (CD56) expression resulting in a CD56bright phenotype. Compared with control conditions, NK cells expanded in the presence of the AHR antagonist, StemRegenin-1, were unaffected in proliferation or cytotoxicity, had no increase in NCAM1 transcription, and maintained the CD56dim phenotype. However, it showed altered expression of 1004 genes including those strongly associated with signaling pathways. In contrast, NK cells expanded in the presence of the AHR agonist, kynurenine, showed decreased cytotoxicity and altered expression of 97 genes including those strongly associated with oxidative stress and cellular metabolism. By overlaying these differentially expressed genes with AHR chromatin binding, we identified 160 genes directly regulated by AHR, including hallmark AHR targets AHRR and CYP1B1 and known regulators of phenotype, development, metabolism, and function such as NCAM1, KIT, NQO1, and TXN. In summary, we define the AHR transcriptome in NK cells, propose a model of AHR and Stat3 coregulation, and identify potential pathways that may be targeted to overcome AHR-mediated immune suppression.


Assuntos
Receptores de Hidrocarboneto Arílico , Transcriptoma , Diferenciação Celular , Células Matadoras Naturais/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais
20.
Acta Neuropathol Commun ; 9(1): 192, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895332

RESUMO

Primary spinal cord tumors contribute to ≤ 10% of central nervous system tumors in individuals of pediatric or adolescent age. Among intramedullary tumors, spinal ependymomas make up ~ 30% of this rare tumor population. A twelve-year-old male presented with an intradural, extramedullary mass occupying the dorsal spinal canal from C6 through T2. Gross total resection and histopathology revealed a World Health Organization (WHO) grade 2 ependymoma. He recurred eleven months later with extension from C2 through T1-T2. Subtotal resection was achieved followed by focal proton beam irradiation and chemotherapy. Histopathology was consistent with WHO grade 3 ependymoma. Molecular profiling of the primary and recurrent tumors revealed a novel amplification of the MYC (8q24) gene, which was confirmed by fluorescence in situ hybridization studies. Although MYC amplification in spinal ependymoma is exceedingly rare, a newly described classification of spinal ependymoma harboring MYCN (2p24) amplification (SP-MYCN) has been defined by DNA methylation-array based profiling. These individuals typically present with a malignant progression and dismal outcomes, contrary to the universally excellent survival outcomes seen in other spinal ependymomas. DNA methylation array-based classification confidently classified this tumor as SP-MYCN ependymoma. Notably, among the cohort of 52 tumors comprising the SP-MYCN methylation class, none harbor MYC amplification, highlighting the rarity of this genomic amplification in spinal ependymoma. A literature review comparing our individual to reported SP-MYCN tumors (n = 26) revealed similarities in clinical, histopathologic, and molecular features. Thus, we provide evidence from a single case to support the inclusion of MYC amplified spinal ependymoma within the molecular subgroup of SP-MYCN.


Assuntos
Ependimoma/diagnóstico , Proteína Proto-Oncogênica N-Myc , Neoplasias da Medula Espinal/diagnóstico , Neoplasias da Coluna Vertebral/diagnóstico , Criança , Ependimoma/genética , Ependimoma/patologia , Humanos , Masculino , Neoplasias da Medula Espinal/genética , Neoplasias da Medula Espinal/patologia , Neoplasias da Coluna Vertebral/genética , Neoplasias da Coluna Vertebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA