Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 54(4): 235-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25546585

RESUMO

In situ detection of genomic alterations in cancer provides information at the single cell level, making it possible to investigate genomic changes in cells in a tissue context. Such topological information is important when studying intratumor heterogeneity as well as alterations related to different steps in tumor progression. We developed a quantitative multigene fluorescence in situ hybridization (QM FISH) method to detect multiple genomic regions in single cells in complex tissues. As a "proof of principle" we applied the method to breast cancer samples to identify partners in whole arm (WA) translocations. WA gain of chromosome arm 1q and loss of chromosome arm 16q are among the most frequent genomic events in breast cancer. By designing five specific FISH probes based on breakpoint information from comparative genomic hybridization array (aCGH) profiles, we visualized chromosomal translocations in clinical samples at the single cell level. By analyzing aCGH data from 295 patients with breast carcinoma with known molecular subtype, we found concurrent WA gain of 1q and loss of 16q to be more frequent in luminal A tumors compared to other molecular subtypes. QM FISH applied to a subset of samples (n = 26) identified a derivative chromosome der(1;16)(q10;p10), a result of a centromere-close translocation between chromosome arms 1q and 16p. In addition, we observed that the distribution of cells with the translocation varied from sample to sample, some had a homogenous cell population while others displayed intratumor heterogeneity with cell-to-cell variation. Finally, for one tumor with both preinvasive and invasive components, the fraction of cells with translocation was lower and more heterogeneous in the preinvasive tumor cells compared to the cells in the invasive component.


Assuntos
Neoplasias da Mama/genética , Hibridização in Situ Fluorescente/métodos , Translocação Genética , Quebra Cromossômica , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 16 , Feminino , Humanos
2.
Int J Cancer ; 131(4): E405-15, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21935921

RESUMO

The presence of disseminated tumor cells (DTCs) in bone marrow (BM) identifies breast cancer patients with less favorable outcome. Furthermore, molecular characterization is required to investigate the malignant potential of these cells. This study presents a single-cell array comparative genomic hybridization (SCaCGH) method providing molecular analysis of immunomorphologically detected DTCs. The resolution limit of the method was estimated using the cancer cell line SK-BR-3 on 44 and 244k arrays. The technique was further tested on 28 circulating tumor cells and four hematopoietic cells (HCs) from peripheral blood (n = 8 patients). The SCaCGH method was finally applied to 24 DTCs, three immunopositive cells morphologically classified as probable HCs from breast cancer patients and five HC controls from BM (n = 7 patients plus n = 1 healthy donor). The frequency of copy number changes of the DTCs revealed similarities with primary breast tumor samples. Three of the patients had available profiles for DTCs and the corresponding tumor tissue from primary surgery. More than two-third of the analyzed DTCs disclosed equivalent changes, both to each other and to the corresponding primary disease, whereas the rest of the cells showed balanced profiles. The probable HCs revealed either balanced profiles (n = 2) or changes comparable to the tumor tissue and DTCs (n = 1), indicating morphological overlap between HCs and DTCs. Similar aberration patterns were visible in DTCs collected at diagnosis and at 3 years relapse-free follow-up. SCaCGH may be a powerful tool for the molecular characterization of DTCs.


Assuntos
Neoplasias da Mama/genética , Dosagem de Genes , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Feminino , Humanos , Metástase Neoplásica
3.
Genome Biol ; 17(1): 250, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27931250

RESUMO

BACKGROUND: Single-cell micro-metastases of solid tumors often occur in the bone marrow. These disseminated tumor cells (DTCs) may resist therapy and lay dormant or progress to cause overt bone and visceral metastases. The molecular nature of DTCs remains elusive, as well as when and from where in the tumor they originate. Here, we apply single-cell sequencing to identify and trace the origin of DTCs in breast cancer. RESULTS: We sequence the genomes of 63 single cells isolated from six non-metastatic breast cancer patients. By comparing the cells' DNA copy number aberration (CNA) landscapes with those of the primary tumors and lymph node metastasis, we establish that 53% of the single cells morphologically classified as tumor cells are DTCs disseminating from the observed tumor. The remaining cells represent either non-aberrant "normal" cells or "aberrant cells of unknown origin" that have CNA landscapes discordant from the tumor. Further analyses suggest that the prevalence of aberrant cells of unknown origin is age-dependent and that at least a subset is hematopoietic in origin. Evolutionary reconstruction analysis of bulk tumor and DTC genomes enables ordering of CNA events in molecular pseudo-time and traced the origin of the DTCs to either the main tumor clone, primary tumor subclones, or subclones in an axillary lymph node metastasis. CONCLUSIONS: Single-cell sequencing of bone marrow epithelial-like cells, in parallel with intra-tumor genetic heterogeneity profiling from bulk DNA, is a powerful approach to identify and study DTCs, yielding insight into metastatic processes. A heterogeneous population of CNA-positive cells is present in the bone marrow of non-metastatic breast cancer patients, only part of which are derived from the observed tumor lineages.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/metabolismo , Análise de Sequência de DNA , Análise de Célula Única , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Axila , Biomarcadores Tumorais , Células da Medula Óssea/metabolismo , Neoplasias da Mama/metabolismo , Variações do Número de Cópias de DNA , Humanos , Imuno-Histoquímica , Linfonodos/patologia , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/patologia , Análise de Célula Única/métodos
4.
Front Oncol ; 3: 320, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24427740

RESUMO

Disseminated tumor cells (DTCs) detected in the bone marrow have been shown as an independent prognostic factor for women with breast cancer. However, the mechanisms behind the tumor cell dissemination are still unclear and more detailed knowledge is needed to fully understand why some cells remain dormant and others metastasize. Sequencing of single cells has opened for the possibility to dissect the genetic content of subclones of a primary tumor, as well as DTCs. Previous studies of genetic changes in DTCs have employed single-cell array comparative genomic hybridization which provides information about larger aberrations. To date, next-generation sequencing provides the possibility to discover new, smaller, and copy neutral genetic changes. In this study, we performed whole-genome amplification and subsequently next-generation sequencing to analyze DTCs from two breast cancer patients. We compared copy-number profiles of the DTCs and the corresponding primary tumor generated from sequencing and SNP-comparative genomic hybridization (CGH) data, respectively. While one tumor revealed mostly whole-arm gains and losses, the other had more complex alterations, as well as subclonal amplification and deletions. Whole-arm gains or losses in the primary tumor were in general also observed in the corresponding DTC. Both primary tumors showed amplification of chromosome 1q and deletion of parts of chromosome 16q, which was recaptured in the corresponding DTCs. Interestingly, clear differences were also observed, indicating that the DTC underwent further evolution at the copy-number level. This study provides a proof-of-principle for sequencing of DTCs and correlation with primary copy-number profiles. The analyses allow insight into tumor cell dissemination and show ongoing copy-number evolution in DTCs compared to the primary tumors.

5.
Anticancer Res ; 30(12): 4835-40, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21187460

RESUMO

UNLABELLED: The pharmacology of progestins includes actions initiated by various cellular targets, including classic receptors characterized as nuclear transcription factors (nPR), G-protein-coupled membrane receptors (mPR), enzymes, membrane channels and transporters. The effects initiated by targets other than nPR are termed non-genomic and there is an increasing recognition that these effects also play an important role in the regulation of cell growth. MATERIALS AND METHODS: The nPR-positive breast cancer (MCF-7) and the nPR-negative uterine cervix cancer (C4-I) cell lines were exposed to progesterone (PG) and mifepristone (MF) during a culture period of 96 h. Daily cell count, cell cycle analysis and apoptosis assay were performed. RESULTS: It was possible to separate the nPR initiated effects (growth stimulation) from the non-genomic effects (growth inhibition) in the MCF-7 cells. Below 1 µM PG treatment gave a small, but distinct increase in cell density which was effectively blocked by MF. Such an effect was absent from the nPR-negative C4-I cells. For a range of concentrations between 1 µM and 100 µM, the effect of both PG and MF developed over time and showed concentration dependency. The PG concentrations needed to reduce cell density by 50% (IC(50)) were 12.8 ± 1.1 µM and 6.5 ± 0.2 µM for the MCF-7 and C4-I cells, respectively. MF appeared to be equally or slightly more potent, with respective IC(50) values of 6.9 ± 0.5 µM and 5.3 ± 0.3 µM. The cell density reduction was both a result of cell cycle arrest and apoptosis. The combination of PG and MF had a potentiated effect on cell density reduction, cell cycle arrest and apoptosis. CONCLUSION: The antiproliferative/cytotoxic effect of PG and MF in concentrations between 1 and 100 µM is of a non-genomic nature.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Mifepristona/farmacologia , Progesterona/farmacologia , Neoplasias da Mama/metabolismo , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Progesterona/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA