RESUMO
The ability to harvest light effectively in a changing environment is necessary to ensure efficient photosynthesis and crop growth. One mechanism, known as qE, protects photosystem II (PSII) and regulates electron transfer through the harmless dissipation of excess absorbed photons as heat. This process involves reversible clustering of the major light-harvesting complexes of PSII (LHCII) in the thylakoid membrane and relies upon the ΔpH gradient and the allosteric modulator protein PsbS. To date, the exact role of PsbS in the qE mechanism has remained elusive. Here, we show that PsbS induces hydrophobic mismatch in the thylakoid membrane through dynamic rearrangement of lipids around LHCII leading to observed membrane thinning. We found that upon illumination, the thylakoid membrane reversibly shrinks from around 4.3 to 3.2 nm, without PsbS, this response is eliminated. Furthermore, we show that the lipid digalactosyldiacylglycerol (DGDG) is repelled from the LHCII-PsbS complex due to an increase in both the pKa of lumenal residues and in the dipole moment of LHCII, which allows for further conformational change and clustering in the membrane. Our results suggest a mechanistic role for PsbS as a facilitator of a hydrophobic mismatch-mediated phase transition between LHCII-PsbS and its environment. This could act as the driving force to sort LHCII into photoprotective nanodomains in the thylakoid membrane. This work shows an example of the key role of the hydrophobic mismatch process in regulating membrane protein function in plants.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexo de Proteína do Fotossistema II , Tilacoides , Tilacoides/metabolismo , Tilacoides/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Galactolipídeos/metabolismo , Galactolipídeos/química , LuzRESUMO
Cells subjected to environmental stresses undergo regulated cell death (RCD) when homeostatic programs fail to maintain viability. A major mechanism of RCD is the excessive calcium loading of mitochondria and consequent triggering of the mitochondrial permeability transition (mPT), which is especially important in post-mitotic cells such as cardiomyocytes and neurons. Here, we show that stress-induced upregulation of the ROS-generating protein Nox4 at the ER-mitochondria contact sites (MAMs) is a pro-survival mechanism that inhibits calcium transfer through InsP3 receptors (InsP3 R). Nox4 mediates redox signaling at the MAM of stressed cells to augment Akt-dependent phosphorylation of InsP3 R, thereby inhibiting calcium flux and mPT-dependent necrosis. In hearts subjected to ischemia-reperfusion, Nox4 limits infarct size through this mechanism. These results uncover a hitherto unrecognized stress pathway, whereby a ROS-generating protein mediates pro-survival effects through spatially confined signaling at the MAM to regulate ER to mitochondria calcium flux and triggering of the mPT.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Animais , Sobrevivência Celular , Receptores de Inositol 1,4,5-Trifosfato/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , NADPH Oxidase 4/genética , Estresse Oxidativo , RatosRESUMO
Traditional image acquisition for cryo focused ion-beam scanning electron microscopy (FIB-SEM) tomography often sees thousands of images being captured over a period of many hours, with immense data sets being produced. When imaging beam sensitive materials, these images are often compromised by additional constraints related to beam damage and the devitrification of the material during imaging, which renders data acquisition both costly and unreliable. Subsampling and inpainting are proposed as solutions for both of these aspects, allowing fast and low-dose imaging to take place in the Focused ion-beam scanning electron microscopy FIB-SEM without an appreciable loss in image quality. In this work, experimental data are presented which validate subsampling and inpainting as a useful tool for convenient and reliable data acquisition in a FIB-SEM, with new methods of handling three-dimensional data being employed in the context of dictionary learning and inpainting algorithms using a newly developed microscope control software and data recovery algorithm.
RESUMO
Mutations in VHL, which encodes von Hippel-Lindau tumor suppressor (VHL), are associated with divergent diseases. We describe a patient with marked erythrocytosis and prominent mitochondrial alterations associated with a severe germline VHL deficiency due to homozygosity for a novel synonymous mutation (c.222CâA, p.V74V). The condition is characterized by early systemic onset and differs from Chuvash polycythemia (c.598CâT) in that it is associated with a strongly reduced growth rate, persistent hypoglycemia, and limited exercise capacity. We report changes in gene expression that reprogram carbohydrate and lipid metabolism, impair muscle mitochondrial respiratory function, and uncouple oxygen consumption from ATP production. Moreover, we identified unusual intermitochondrial connecting ducts. Our findings add unexpected information on the importance of the VHL-hypoxia-inducible factor (HIF) axis to human phenotypes. (Funded by Associazione Italiana Ricerca sul Cancro and others.).
Assuntos
Mutação em Linhagem Germinativa , Transtornos do Crescimento/genética , Hipoglicemia/genética , Fator 1 Induzível por Hipóxia/deficiência , Mitocôndrias/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Expressão Gênica , Crescimento/genética , Humanos , Masculino , Metaboloma/genética , Metaboloma/fisiologia , Síndrome , Adulto JovemRESUMO
La-related protein 6 (Larp6) is a conserved RNA-binding protein found across eukaryotes that has been suggested to regulate collagen biogenesis, muscle development, ciliogenesis, and various aspects of cell proliferation and migration. Zebrafish have two Larp6 family genes: larp6a and larp6b Viable and fertile single and double homozygous larp6a and larp6b zygotic mutants revealed no defects in muscle structure, and were indistinguishable from heterozygous or wild-type siblings. However, larp6a mutant females produced eggs with chorions that failed to elevate fully and were fragile. Eggs from larp6b single mutant females showed minor chorion defects, but chorions from eggs laid by larp6a;larp6b double mutant females were more defective than those from larp6a single mutants. Electron microscopy revealed defective chorionogenesis during oocyte development. Despite this, maternal zygotic single and double mutants were viable and fertile. Mass spectrometry analysis provided a description of chorion protein composition and revealed significant reductions in a subset of zona pellucida and lectin-type proteins between wild-type and mutant chorions that paralleled the severity of the phenotype. We conclude that Larp6 proteins are required for normal oocyte development, chorion formation and egg activation.
Assuntos
Autoantígenos/genética , Autoantígenos/fisiologia , Córion/fisiologia , Oócitos/fisiologia , Ribonucleoproteínas/genética , Ribonucleoproteínas/fisiologia , Animais , Movimento Celular , Proliferação de Células , Colágeno/fisiologia , Proteínas do Ovo/fisiologia , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Genótipo , Heterozigoto , Homozigoto , Lectinas/fisiologia , Masculino , Mutação , Oócitos/citologia , Oogênese/fisiologia , Fenótipo , Peixe-Zebra , Zona Pelúcida/fisiologia , Antígeno SS-BRESUMO
Neurons receive a multitude of synaptic inputs along their dendritic arbor, but how this highly heterogeneous population of synaptic compartments is spatially organized remains unclear. By measuring N-methyl-d-aspartic acid receptor (NMDAR)-driven calcium responses in single spines, we provide a spatial map of synaptic calcium signals along dendritic arbors of hippocampal neurons and relate this to measures of synapse structure. We find that quantal NMDAR calcium signals increase in amplitude as they approach a thinning dendritic tip end. Based on a compartmental model of spine calcium dynamics, we propose that this biased distribution in calcium signals is governed by a gradual, distance-dependent decline in spine size, which we visualized using serial block-face scanning electron microscopy. Our data describe a cell-autonomous feature of principal neurons, where tapering dendrites show an inverse distribution of spine size and NMDAR-driven calcium signals along dendritic trees, with important implications for synaptic plasticity rules and spine function.
Assuntos
Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Sinalização do Cálcio , Espinhas Dendríticas/ultraestrutura , Embrião de Mamíferos , Feminino , Expressão Gênica , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Microtomia , N-Metilaspartato/metabolismo , Plasticidade Neuronal , Gravidez , Cultura Primária de Células , Células Piramidais/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Sinapses/fisiologiaRESUMO
In the asexual blood stages of malarial infection, merozoites invade erythrocytes and replicate within a parasitophorous vacuole to form daughter cells that eventually exit (egress) by sequential rupture of the vacuole and erythrocyte membranes. The current model is that PKG, a malarial cGMP-dependent protein kinase, triggers egress, activating malarial proteases and other effectors. Using selective inhibitors of either PKG or cysteine proteases to separately inhibit the sequential steps in membrane perforation, combined with video microscopy, electron tomography, electron energy loss spectroscopy, and soft X-ray tomography of mature intracellular Plasmodium falciparum parasites, we resolve intermediate steps in egress. We show that the parasitophorous vacuole membrane (PVM) is permeabilized 10-30 min before its PKG-triggered breakdown into multilayered vesicles. Just before PVM breakdown, the host red cell undergoes an abrupt, dramatic shape change due to the sudden breakdown of the erythrocyte cytoskeleton, before permeabilization and eventual rupture of the erythrocyte membrane to release the parasites. In contrast to the previous view of PKG-triggered initiation of egress and a gradual dismantling of the host erythrocyte cytoskeleton over the course of schizont development, our findings identify an initial step in egress and show that host cell cytoskeleton breakdown is restricted to a narrow time window within the final stages of egress.
Assuntos
Citoesqueleto/metabolismo , Membrana Eritrocítica/parasitologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Citoesqueleto/genética , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Malária Falciparum/genética , Malária Falciparum/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
Hepatitis C virus (HCV) is a unique enveloped virus that assembles as a hybrid lipoviral particle by tightly interacting with host lipoproteins. As a result, HCV virions display a characteristic low buoyant density and a deceiving coat, with host-derived apolipoproteins masking viral epitopes. We previously described methods to produce high-titer preparations of HCV particles with tagged envelope glycoproteins that enabled ultrastructural analysis of affinity-purified virions. Here, we performed proteomics studies of HCV isolated from culture media of infected hepatoma cells to define viral and host-encoded proteins associated with mature virions. Using two different affinity purification protocols, we detected four viral and 46 human cellular proteins specifically copurifying with extracellular HCV virions. We determined the C terminus of the mature capsid protein and reproducibly detected low levels of the viral nonstructural protein, NS3. Functional characterization of virion-associated host factors by RNAi identified cellular proteins with either proviral or antiviral roles. In particular, we discovered a novel interaction between HCV capsid protein and the nucleoporin Nup98 at cytosolic lipid droplets that is important for HCV propagation. These results provide the first comprehensive view to our knowledge of the protein composition of HCV and new insights into the complex virus-host interactions underlying HCV infection.
Assuntos
Hepacivirus/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteômica , Proteínas Virais/metabolismo , Vírion/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Hepacivirus/metabolismo , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Morfogênese , Proteínas Virais/químicaRESUMO
Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells.
Assuntos
Eritrócitos/parasitologia , Eritrócitos/ultraestrutura , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Eritrócitos/metabolismo , Humanos , Proteínas de Membrana/metabolismoRESUMO
The twin-arginine translocation (Tat) system is an integral membrane protein complex that accomplishes the remarkable feat of transporting large, fully folded polypeptides across the inner membrane of bacteria, into the periplasm. In Escherichia coli, Tat comprises three membrane proteins: TatA, TatB and TatC. How these proteins arrange themselves in the inner membrane to permit passage of Tat substrates, whilst maintaining membrane integrity, is still poorly understood. TatA is the most abundant component of this complex and facilitates assembly of the transport mechanism. We have utilised immunogold labelling in combination with array tomography to gain insight into the localisation and distribution of the TatA protein in E. coli cells. We show that TatA exhibits a uniform distribution throughout the inner membrane of E. coli and that altering the expression of TatBC shows a previously uncharacterised distribution of TatA in the inner membrane. Array tomography was used to provide our first insight into this altered distribution of TatA in three-dimensional space, revealing that this protein forms linear clusters in the inner membrane of E. coli upon increased expression of TatBC. This is the first indication that TatA organisation in the inner membrane alters in response to changes in Tat subunit stoichiometry.
Assuntos
Proteínas de Escherichia coli/ultraestrutura , Imageamento Tridimensional/métodos , Proteínas de Membrana Transportadoras/ultraestrutura , Microscopia Imunoeletrônica/métodos , Complexos Multiproteicos/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Óperon , Ligação Proteica , Transporte ProteicoRESUMO
The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network of membranes and mitochondria encompassing the infranuclear region of the cell. This network is juxtaposed to a population of small vesicles, which represents a potential new source of neurotransmitter vesicles for replenishment of the synapses. Structural linkages between organelles that underlie this organisation were identified by high-resolution imaging. Taken together, these results describe a cell-encompassing network of membranes and mitochondria present in IHCs that support efficient coding and transmission of auditory signals. Such techniques also have the potential for clarifying functionally specialised cytoarchitecture of other cell types.
Assuntos
Células Ciliadas Auditivas Internas/ultraestrutura , Imageamento Tridimensional , Vesículas Sinápticas/ultraestrutura , Animais , Cobaias , Células Ciliadas Auditivas Internas/metabolismo , Camundongos , Microscopia Eletrônica , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismoRESUMO
Woolly hair nevus is a mosaic disorder characterized by unruly, tightly curled hair in a circumscribed area of the scalp. This condition may be associated with epidermal nevi. We describe an 11-year-old boy who initially presented with multiple patches of woolly hair and with epidermal nevi on his left cheek and back. He had no nail, teeth, eye, or cardiac abnormalities. Analysis of plucked hairs from patches of woolly hair showed twisting of the hair shaft and an abnormal hair cuticle. Histopathology of a woolly hair patch showed diffuse hair follicle miniaturization with increased vellus hairs.
Assuntos
Doenças do Cabelo/patologia , Folículo Piloso/fisiologia , Folículo Piloso/ultraestrutura , Criança , Humanos , Masculino , Microscopia Eletrônica de Varredura , Mosaicismo , Nevo/patologiaRESUMO
Here we introduce scattering-type scanning near-field optical microscopy (s-SNOM) as a novel tool for nanoscale chemical-imaging of sub-cellular organelles, nanomaterials and of the interactions between them. Our setup uses a tuneable mid-infrared laser and a sharp scanning probe to image at a resolution substantially surpassing the diffraction limit. The laser can be tuned to excite vibrational modes of functional groups in biomolecules, (e.g. amide moieties), in a way that enables direct chemical mapping without the need for labelling. We, for the first time, chemically image neuronal ultrastructure, identify neuronal organelles and sub-organelle structures as small as 10 nm and validate our findings using transmission electron microscopy (TEM). We produce chemical and morphological maps of neurons treated with gold nanospheres and characterize nanoparticle size and intracellular location, and their interaction with the plasma membrane. Our results show that the label-free nature of s-SNOM means it has a 'true' chemical resolution of up to 20 nm which can be further improved. We argue that it offers significant potential in nanomedicine for nanoscale chemical imaging of cell ultrastructure and the subcellular distribution of nanomaterials within tissues.
Assuntos
Nanopartículas , Nanoestruturas , Nanotecnologia/métodos , Microscopia/métodos , Nanoestruturas/química , LuzRESUMO
Neurons receive correlated levels of excitation and inhibition, a feature that is important for proper brain function. However, how this relationship between excitatory and inhibitory inputs is established during the dynamic period of circuit wiring remains unexplored. Using multiple techniques, including in utero electroporation, electron microscopy, and electrophysiology, we reveal a tight correlation in the distribution of excitatory and inhibitory synapses along the dendrites of developing CA1 hippocampal neurons. This correlation was present within short dendritic stretches (<20 µm) and, surprisingly, was most pronounced during early development, sharply declining with maturity. The tight matching between excitation and inhibition was unexpected, as inhibitory synapses lacked an active zone when formed and exhibited compromised evoked release. We propose that inhibitory synapses form as a stabilizing scaffold to counterbalance growing excitation levels. This relationship diminishes over time, suggesting a critical role for a subcellular balance in early neuronal function and circuit formation.
Assuntos
Sinapses , Animais , Sinapses/metabolismo , Sinapses/fisiologia , Dendritos/metabolismo , Dendritos/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/citologia , FemininoRESUMO
Background: Malignant pleural mesothelioma (MPM) is an incurable, late presenting primary cancer, conferring a survival of 8-14 months. Different intrapleural treatments have been tested as part of a multimodality approach to treat a select group of patients with limited disease, increasing survival. Recently, povidone-iodine has been shown to induce apoptosis in microscopic tumour cells in vitro, with no reported complications. This is the first in vivo study assessing the apoptotic rate caused by intraoperative hyperthermic betadine lavage using routine immunohistochemistry combined with transmission electron microscopy (TEM). Methods: We included surgically fit patients aged >18, undergoing minimally invasive video-assisted thoracoscopic surgery (VATS) pleural biopsy between December 2016 and February 2018, for confirmed or presumed pleural malignancy. Parietal pleural biopsies were obtained at 7.5, 15 and 30 minutes after hyperthermic betadine lavage, and compared to pre-lavage biopsy samples, for apoptotic changes. Viable tumour samples underwent histological, immunohistochemical and ultrastructural analysis as well as TEM for features of apoptosis. Results: N=6. Median age was 76 years. Median overall survival was 26.7 months. There was no statistical impact on survival of side of disease (left vs. right). There was no significant difference in expressions of markers of apoptotic index pre and post betadine treatment upon immunohistochemical analysis. There was no discernible effect on morphological features of apoptosis seen with betadine treatment, on TEM analysis. No side effects were identified post betadine lavage. Conclusions: Although hyperthermic betadine lavage is a safe antiseptic solution with no toxicity when performed intraoperatively, it confers no effect on apoptotic rate or necrosis. It is therefore unlikely that hyperthermic betadine lavage will have an impact on reducing the microscopic residual disease after pleurectomy decortication and enhancing survival.
RESUMO
Blood-brain barrier (BBB) dysfunction may be involved in the increased sensitivity of Alzheimer's disease (AD) patients to antipsychotics, including amisulpride. Studies indicate that antipsychotics interact with facilitated glucose transporters (GLUT), including GLUT1, and that GLUT1 BBB expression decreases in AD. We tested the hypotheses that amisulpride (charge: +1) interacts with GLUT1, and that BBB transport of amisulpride is compromised in AD. GLUT1 substrates, GLUT1 inhibitors and GLUT-interacting antipsychotics were identified by literature review and their physicochemical characteristics summarised. Interactions between amisulpride and GLUT1 were studied using in silico approaches and the human cerebral endothelial cell line, hCMEC/D3. Brain distribution of [3H]amisulpride was determined using in situ perfusion in wild type (WT) and 5xFamilial AD (5xFAD) mice. With transmission electron microscopy (TEM) we investigated brain capillary degeneration in WT mice, 5xFAD mice and human samples. Western blots determined BBB transporter expression in mouse and human. Literature review revealed that, although D-glucose has no charge, charged molecules can interact with GLUT1. GLUT1 substrates are smaller (184.95±6.45g/mol) than inhibitors (325.50±14.40g/mol) and GLUT-interacting antipsychotics (369.38±16.04). Molecular docking showed beta-D-glucose (free energy binding: -15.39kcal/mol) and amisulpride (-29.04kcal/mol) interact with GLUT1. Amisulpride did not affect [14C]D-glucose hCMEC/D3 accumulation. [3H]amisulpride uptake into the brain (except supernatant) of 5xFAD mice compared to WT remained unchanged. TEM revealed brain capillary degeneration in human AD. There was no difference in GLUT1 or P-glycoprotein BBB expression between WT and 5xFAD mice. In contrast, caudate P-glycoprotein, but not GLUT1, expression was decreased in human AD capillaries versus controls. This study provides new details about the BBB transport of amisulpride, evidence that amisulpride interacts with GLUT1 and that BBB transporter expression is altered in AD. This suggests that antipsychotics could potentially exacerbate the cerebral hypometabolism in AD. Further research into the mechanism of amisulpride transport by GLUT1 is important for improving antipsychotics safety.
Assuntos
Doença de Alzheimer , Antipsicóticos , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Amissulprida , Doença de Alzheimer/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Simulação de Acoplamento Molecular , Encéfalo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antipsicóticos/farmacologia , Antipsicóticos/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismoRESUMO
Recessive dystrophic epidermolysis bullosa is a debilitating blistering skin disorder caused by loss-of-function mutations in COL7A1, which encodes type VII collagen, the main component of anchoring fibrils at the dermal-epidermal junction. Although conventional gene therapy approaches through viral vectors have been tested in preclinical and clinical trials, they are limited by transgene size constraints and only support unregulated gene expression. Genome editing could potentially overcome some of these limitations, and CRISPR/Cas9 has already been applied in research studies to restore COL7A1 expression. The delivery of suitable repair templates for the repair of DNA cleaved by Cas9 is still a major challenge, and alternative base editing strategies may offer corrective solutions for certain mutations. We show highly targeted and efficient cytidine deamination and molecular correction of a defined recessive dystrophic epidermolysis bullosa mutation (c.425A>G), leading to restoration of full-length type VII collagen protein expression in primary human fibroblasts and induced pluripotent stem cells. Type VII collagen basement membrane expression and skin architecture were restored with de novo anchoring fibrils identified by electron microscopy in base-edited human recessive dystrophic epidermolysis bullosa grafts recovered from immunodeficient mice. The results show the potential and promise of emerging base editing technologies in tackling inherited disorders with well-defined single nucleotide mutations.
RESUMO
Phase-change nanodroplets have attracted increasing interest in recent years as ultrasound theranostic nanoparticles. They are smaller compared to microbubbles and they may distribute better in tissues (e.g. in tumours). They are composed of a stabilising shell and a perfluorocarbon core. Nanodroplets can vaporise into echogenic microbubbles forming cavitation nuclei when exposed to ultrasound. Their perfluorocarbon core phase-change is responsible for the acoustic droplet vaporisation. However, methods to quantify the perfluorocarbon core in nanodroplets are lacking. This is an important feature that can help explain nanodroplet phase change characteristics. In this study, we fabricated nanodroplets using lipids shell and perfluorocarbons. To assess the amount of perfluorocarbon in the core we used two methods, 19F NMR and FTIR. To assess the cavitation after vaporisation we used an ultrasound transducer (1.1 MHz) and a high-speed camera. The 19F NMR based method showed that the fluorine signal correlated accurately with the perfluorocarbon concentration. Using this correlation, we were able to quantify the perfluorocarbon core of nanodroplets. This method was used to assess the content of the perfluorocarbon of the nanodroplets in solutions over time. It was found that perfluoropentane nanodroplets lost their content faster and at higher ratio compared to perfluorohexane nanodroplets. The high-speed imaging indicates that the nanodroplets generate cavitation comparable to that from commercial contrast agent microbubbles. Nanodroplet characterisation should include perfluorocarbon concentration assessment as critical information for their development.
Assuntos
Fluorocarbonos , Nanopartículas , Ultrassonografia , Nanopartículas/química , Volatilização , Meios de Contraste/química , Fluorocarbonos/química , MicrobolhasRESUMO
Fluorescent InP-based quantum dots have emerged as valuable nanomaterials for display technologies, biological imaging, and optoelectronic applications. The inclusion of zinc can enhance both their emissive and structural properties and reduce interfacial defects with ZnS or CdS shells. However, the sub-particle distribution of zinc and the role this element plays often remains unclear, and it has previously proved challenging to synthesise Zn-alloyed InP-based nanoparticles using aminophosphine precursors. In this report, we describe the synthesis of alloyed InZnP using zinc carboxylates, achieving colour-tuneable fluorescence from the unshelled core materials, followed by a one-pot ZnS or CdS deposition using diethyldithiocarbamate precursors. Structural analysis revealed that the "core/shell" particles synthesised here were more accurately described as homogeneous extended alloys with the constituent shell elements diffusing through the entire core, including full-depth inclusion of zinc.