Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Resist Updat ; 75: 101099, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850692

RESUMO

Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.


Assuntos
Anoikis , Antineoplásicos , Neoplasias , Anoikis/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metástase Neoplásica
2.
Drug Resist Updat ; 73: 101062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330827

RESUMO

Multidrug resistance protein 7 (MRP7), also known as ATP-binding cassette (ABC) transporter subfamily C10 (ABCC10), is an ABC transporter that was first identified in 2001. ABCC10/MRP7 is a 171 kDa protein located on the basolateral membrane of cells. ABCC10/MRP7 consists of three transmembrane domains and two nucleotide binding domains. It mediates multidrug resistance of tumor cells to a variety of anticancer drugs by increasing drug efflux and results in reducing intracellular drug accumulation. The transport substrates of ABCC10/MRP7 include antineoplastic drugs such as taxanes, vinca alkaloids, and epothilone B, as well as endobiotics such as leukotriene C4 (LTC4) and estradiol 17 ß-D-glucuronide. A variety of ABCC10/MRP7 inhibitors, including cepharanthine, imatinib, erlotinib, tariquidar, and sildenafil, can reverse ABCC10/MRP7-mediated MDR. Additionally, the presence or absence of ABCC10/MRP7 is also closely related to renal tubular dysfunction, obesity, and other diseases. In this review, we discuss: 1) Structure and functions of ABCC10/MRP7; 2) Known substrates and inhibitors of ABCC10/MRP7 and their potential therapeutic applications in cancer; and 3) Role of ABCC10/MRP7 in non-cancerous diseases.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Múltiplos Medicamentos/genética , Mesilato de Imatinib/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
Drug Resist Updat ; 72: 101018, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979442

RESUMO

Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.


Assuntos
Cobre , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Morte Celular , Ionóforos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Apoptose
4.
Mol Cancer ; 23(1): 177, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192329

RESUMO

The development of drug resistance remains a major challenge in cancer treatment. Ferroptosis, a unique type of regulated cell death, plays a pivotal role in inhibiting tumour growth, presenting new opportunities in treating chemotherapeutic resistance. Accumulating studies indicate that epigenetic modifications by non-coding RNAs (ncRNA) can determine cancer cell vulnerability to ferroptosis. In this review, we first summarize the role of chemotherapeutic resistance in cancer growth/development. Then, we summarize the core molecular mechanisms of ferroptosis, its upstream epigenetic regulation, and its downstream effects on chemotherapeutic resistance. Finally, we review recent advances in understanding how ncRNAs regulate ferroptosis and from such modulate chemotherapeutic resistance. This review aims to enhance general understanding of the ncRNA-mediated epigenetic regulatory mechanisms which modulate ferroptosis, highlighting the ncRNA-ferroptosis axis as a key druggable target in overcoming chemotherapeutic resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Ferroptose , Regulação Neoplásica da Expressão Gênica , Neoplasias , RNA não Traduzido , Humanos , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , RNA não Traduzido/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Signal Transduct Target Ther ; 9(1): 97, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664391

RESUMO

Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.


Assuntos
Ácidos e Sais Biliares , Transdução de Sinais , Ácidos e Sais Biliares/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Animais , Ceramidas/metabolismo , Ceramidas/genética
6.
Mol Neurobiol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331355

RESUMO

Neuroblastoma is a deadly pediatric cancer that originates from the neural crest and frequently develops in the abdomen or adrenal gland. Although multiple approaches, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, are recommended for treating neuroblastoma, the tumor will eventually develop resistance, leading to treatment failure and cancer relapse. Therefore, a firm understanding of the molecular mechanisms underlying therapeutic resistance is vital for the development of new effective therapies. Recent research suggests that cancer-specific modifications to multiple subtypes of nonapoptotic regulated cell death (RCD), such as ferroptosis and cuproptosis, contribute to therapeutic resistance in neuroblastoma. Targeting these specific types of RCD may be viable novel targets for future drug discovery in the treatment of neuroblastoma. In this review, we summarize the core mechanisms by which the inability to properly execute ferroptosis and cuproptosis can enhance the pathogenesis of neuroblastoma. Therefore, we focus on emerging therapeutic compounds that can induce ferroptosis or cuproptosis, delineating their beneficial pharmacodynamic effects in neuroblastoma treatment. Cumulatively, we suggest that the pharmacological stimulation of ferroptosis and ferroptosis may be a novel and therapeutically viable strategy to target neuroblastoma.

7.
Biomed Pharmacother ; 174: 116453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513593

RESUMO

Sepsis-associated encephalopathy (SAE), a common neurological complication of sepsis, is a heterogenous complex clinical syndrome caused by the dysfunctional response of a host to infection. This dysfunctional response leads to excess mortality and morbidity worldwide. Despite clinical relevance with high incidence, there is a lack of understanding for its both its acute/chronic pathogenesis and therapeutic management. A better understanding of the molecular mechanisms behind SAE may provide tools to better enhance therapeutic efficacy. Mounting evidence indicates that some types of non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis, and autophagy, contribute to SAE. Targeting these types of RCD may provide meaningful targets for future treatments against SAE. This review summarizes the core mechanism by which non-apoptotic RCD leads to the pathogenesis of SAE. We focus on the emerging types of therapeutic compounds that can inhibit RCD and delineate their beneficial pharmacological effects against SAE. Within this review we suggest that pharmacological inhibition of non-apoptotic RCD may serve as a potential therapeutic strategy against SAE.


Assuntos
Autofagia , Ferroptose , Piroptose , Encefalopatia Associada a Sepse , Humanos , Piroptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Ferroptose/efeitos dos fármacos , Animais , Encefalopatia Associada a Sepse/patologia , Encefalopatia Associada a Sepse/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/patologia , Sepse/tratamento farmacológico , Morte Celular Regulada/efeitos dos fármacos
8.
Biomed Pharmacother ; 176: 116878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843588

RESUMO

Tumor metastasis occurs in hepatocellular carcinoma (HCC), leading to tumor progression and therapeutic failure. Anoikis is a matrix detachment-induced apoptosis, also known as detachment-induced cell death, and mechanistically prevents tumor cells from escaping their native extracellular matrix to metastasize to new organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat HCC. Several natural and synthetic products induce anoikis in HCC cells and in vivo models. Here, we first briefly summarize the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in HCC metastasis. Then we discuss the therapeutic potential of pharmacological induction of anoikis as a potential treatment against HCC. Finally, we discuss the key limitations of this therapeutic paradigm and propose possible strategies to overcome them. Cumulatively this review suggests that the pharmacological induction of anoikis can be used a promising therapeutic modality against HCC.


Assuntos
Anoikis , Carcinoma Hepatocelular , Neoplasias Hepáticas , Anoikis/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Metástase Neoplásica
9.
Drug Discov Today ; 29(8): 104069, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936692

RESUMO

Lenvatinib is a multikinase inhibitor that suppresses vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor α (PDGFRα), as well as the proto-oncogenes RET and KIT. Lenvatinib has been approved by the US Food and Drug Administration (FDA) for the first-line treatment of hepatocellular carcinoma (HCC) due to its superior efficacy when compared to sorafenib. Unfortunately, the development of drug resistance to lenvatinib is becoming increasingly common. Thus, there is an urgent need to identify the factors that lead to drug resistance and ways to mitigate it. We summarize the molecular mechanisms that lead to lenvatinib resistance (LR) in HCC, which involve programmed cell death (PCD), translocation processes, and changes in the tumor microenvironment (TME), and provide strategies to reverse resistance.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Compostos de Fenilureia , Inibidores de Proteínas Quinases , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Microambiente Tumoral/efeitos dos fármacos
10.
Cancer Lett ; 597: 217061, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38876384

RESUMO

Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.


Assuntos
Carcinoma Hepatocelular , Metabolismo dos Lipídeos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Fatores de Risco
11.
Front Pharmacol ; 15: 1290183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855750

RESUMO

Lung cancer is the leading cause of global cancer-related deaths. Platinum-based chemotherapy is the first-line treatment for the most common type of lung cancer, i.e., non-small-cell lung cancer (NSCLC), but its therapeutic efficiency is limited by chemotherapeutic resistance. Therefore, it is vital to develop effective therapeutic modalities that bypass the common molecular mechanisms associated with chemotherapeutic resistance. Ferroptosis is a form of non-apoptotic regulated cell death characterized by iron-dependent lipid peroxidation (LPO). Ferroptosis is crucial for the proper therapeutic efficacy of lung cancer-associated chemotherapies. If targeted as a novel therapeutic mechanism, ferroptosis modulators present new opportunities for increasing the therapeutic efficacy of lung cancer chemotherapy. Emerging studies have revealed that the pharmacological induction of ferroptosis using natural compounds boosts the efficacy of chemotherapy in lung cancer or drug-resistant cancer. In this review, we first discuss chemotherapeutic resistance (or chemoresistance) in lung cancer and introduce the core mechanisms behind ferroptosis. Then, we comprehensively summarize the small-molecule compounds sourced from traditional medicines that may boost the anti-tumor activity of current chemotherapeutic agents and overcome chemotherapeutic resistance in NSCLC. Cumulatively, we suggest that traditional medicines with ferroptosis-related anticancer activity could serve as a starting point to overcome chemotherapeutic resistance in NSCLC by inducing ferroptosis, highlighting new potential therapeutic regimens used to overcome chemoresistance in NSCLC.

12.
Front Pharmacol ; 14: 1336216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38313077

RESUMO

In light of a global rise in the number of patients with type 2 diabetes mellitus (T2DM) and obesity, non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of hepatocellular carcinoma (HCC), with the annual occurrence of MASLD-driven HCC expected to increase by 45%-130% by 2030. Although MASLD has become a serious major public health threat globally, the exact molecular mechanisms mediating MASLD-driven HCC remain an open problem, necessitating future investigation. Meanwhile, emerging studies are focusing on the utility of bioactive compounds to halt the progression of MASLD to MASLD-driven HCC. In this review, we first briefly review the recent progress of the possible mechanisms of pathogenesis and progression for MASLD-driven HCC. We then discuss the application of bioactive compounds to mitigate MASLD-driven HCC through different modulatory mechanisms encompassing anti-inflammatory, lipid metabolic, and gut microbial pathways, providing valuable information for future treatment and prevention of MASLD-driven HCC. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of MASLD-driven HCC is still warranted.

13.
Signal Transduct Target Ther ; 8(1): 449, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072908

RESUMO

Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.


Assuntos
Antineoplásicos , Ferroptose , Nefropatias , Pneumopatias , Neoplasias , Humanos , Ferroptose/genética , Processamento de Proteína Pós-Traducional/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Metilação de DNA , Epigênese Genética/genética , Antineoplásicos/uso terapêutico , Pneumopatias/tratamento farmacológico , Pneumopatias/genética
14.
Front Pharmacol ; 14: 1338633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249350

RESUMO

Cancer cells evolve to be refractory to the intrinsic programmed cell death mechanisms, which ensure cellular tissue homeostasis in physiological conditions. Chemotherapy using cytotoxic drugs seeks to eliminate cancer cells but spare non-cancerous host cells by exploring a likely subtle difference between malignant and benign cells. Presumably, chemotherapy agents achieve efficacy by triggering programmed cell death machineries in cancer cells. Currently, many major solid tumors are treated with chemotherapy composed of a combination of platinum agents and taxanes. Platinum agents, largely cis-platin, carboplatin, and oxaliplatin, are DNA damaging agents that covalently form DNA addicts, triggering DNA repair response pathways. Taxanes, including paclitaxel, docetaxel, and cabazitaxel, are microtubule stabilizing drugs which are often very effective in purging cancer cells in clinical settings. Generally, it is thought that the stabilization of microtubules by taxanes leads to mitotic arrest, mitotic catastrophe, and the triggering of apoptotic programmed cell death. However, the precise mechanism(s) of how mitotic arrest and catastrophe activate the caspase pathway has not been established. Here, we briefly review literature on the involvement of potential cell death mechanisms in cancer therapy. These include the classical caspase-mediated apoptotic programmed cell death, necroptosis mediated by MLKL, and pore forming mechanisms in immune cells, etc. In particular, we discuss a newly recognized mechanism of cell death in taxane-treatment of cancer cells that involves micronucleation and the irreversible rupture of the nuclear membrane. Since cancer cells are commonly retarded in responding to programmed cell death signaling, stabilized microtubule bundle-induced micronucleation and nuclear membrane rupture, rather than triggering apoptosis, may be a key mechanism accounting for the success of taxanes as anti-cancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA