Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Hum Mol Genet ; 32(3): 473-488, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36018820

RESUMO

Kinesins are motor proteins involved in microtubule (MT)-mediated intracellular transport. They contribute to key cellular processes, including intracellular trafficking, organelle dynamics and cell division. Pathogenic variants in kinesin-encoding genes underlie several human diseases characterized by an extremely variable clinical phenotype, ranging from isolated neurodevelopmental/neurodegenerative disorders to syndromic phenotypes belonging to a family of conditions collectively termed as 'ciliopathies.' Among kinesins, kinesin-1 is the most abundant MT motor for transport of cargoes towards the plus end of MTs. Three kinesin-1 heavy chain isoforms exist in mammals. Different from KIF5A and KIF5C, which are specifically expressed in neurons and established to cause neurological diseases when mutated, KIF5B is an ubiquitous protein. Three de novo missense KIF5B variants were recently described in four subjects with a syndromic skeletal disorder characterized by kyphomelic dysplasia, hypotonia and DD/ID. Here, we report three dominantly acting KIF5B variants (p.Asn255del, p.Leu498Pro and p.Leu537Pro) resulting in a clinically wide phenotypic spectrum, ranging from dilated cardiomyopathy with adult-onset ophthalmoplegia and progressive skeletal myopathy to a neurodevelopmental condition characterized by severe hypotonia with or without seizures. In vitro and in vivo analyses provide evidence that the identified disease-associated KIF5B variants disrupt lysosomal, autophagosome and mitochondrial organization, and impact cilium biogenesis. All variants, and one of the previously reported missense changes, were shown to affect multiple developmental processes in zebrafish. These findings document pleiotropic consequences of aberrant KIF5B function on development and cell homeostasis, and expand the phenotypic spectrum resulting from altered kinesin-mediated processes.


Assuntos
Cinesinas , Animais , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Mamíferos/metabolismo , Hipotonia Muscular , Neurônios/metabolismo , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
J Pathol ; 263(2): 166-177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629245

RESUMO

Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Fibrossarcoma , Nefroma Mesoblástico , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-raf , Humanos , Fibrossarcoma/genética , Fibrossarcoma/patologia , Proteínas Proto-Oncogênicas c-raf/genética , Lactente , Proteínas de Fusão Oncogênica/genética , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/patologia , Feminino , Masculino , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fusão Gênica , Transdução de Sinais/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proliferação de Células , Rearranjo Gênico , Variante 6 da Proteína do Fator de Translocação ETS , Receptor trkC
3.
Hum Mol Genet ; 31(4): 561-575, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34508588

RESUMO

Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.


Assuntos
Síndrome de Costello , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Fibroblastos/metabolismo , Humanos , Oxirredução , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética
4.
Am J Med Genet A ; 194(4): e63477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37969032

RESUMO

Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Cardiopatias Congênitas , Neoplasias , Síndrome de Noonan , Humanos , Proteínas ras/genética , Sistema de Sinalização das MAP Quinases/genética , Síndrome de Costello/genética , Neoplasias/genética , Displasia Ectodérmica/genética , Síndrome de Noonan/genética , Cardiopatias Congênitas/genética
5.
Am J Hum Genet ; 107(6): 1129-1148, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186545

RESUMO

The endosomal sorting complexes required for transport (ESCRTs) are essential for multiple membrane modeling and membrane-independent cellular processes. Here we describe six unrelated individuals with de novo missense variants affecting the ATPase domain of VPS4A, a critical enzyme regulating ESCRT function. Probands had structural brain abnormalities, severe neurodevelopmental delay, cataracts, growth impairment, and anemia. In cultured cells, overexpression of VPS4A mutants caused enlarged endosomal vacuoles resembling those induced by expression of known dominant-negative ATPase-defective forms of VPS4A. Proband-derived fibroblasts had enlarged endosomal structures with abnormal accumulation of the ESCRT protein IST1 on the limiting membrane. VPS4A function was also required for normal endosomal morphology and IST1 localization in iPSC-derived human neurons. Mutations affected other ESCRT-dependent cellular processes, including regulation of centrosome number, primary cilium morphology, nuclear membrane morphology, chromosome segregation, mitotic spindle formation, and cell cycle progression. We thus characterize a distinct multisystem disorder caused by mutations affecting VPS4A and demonstrate that its normal function is required for multiple human developmental and cellular processes.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , ATPases Vacuolares Próton-Translocadoras/genética , Alelos , Animais , Encéfalo/anormalidades , Ciclo Celular , Centrossomo/metabolismo , Endossomos/metabolismo , Fibroblastos/metabolismo , Genômica , Células HEK293 , Células HeLa , Humanos , Camundongos , Neurônios/metabolismo , Domínios Proteicos , Transporte Proteico , Fuso Acromático/metabolismo
6.
Am J Hum Genet ; 107(3): 499-513, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32721402

RESUMO

Signal transduction through the RAF-MEK-ERK pathway, the first described mitogen-associated protein kinase (MAPK) cascade, mediates multiple cellular processes and participates in early and late developmental programs. Aberrant signaling through this cascade contributes to oncogenesis and underlies the RASopathies, a family of cancer-prone disorders. Here, we report that de novo missense variants in MAPK1, encoding the mitogen-activated protein kinase 1 (i.e., extracellular signal-regulated protein kinase 2, ERK2), cause a neurodevelopmental disease within the RASopathy phenotypic spectrum, reminiscent of Noonan syndrome in some subjects. Pathogenic variants promote increased phosphorylation of the kinase, which enhances translocation to the nucleus and boosts MAPK signaling in vitro and in vivo. Two variant classes are identified, one of which directly disrupts binding to MKP3, a dual-specificity protein phosphatase negatively regulating ERK function. Importantly, signal dysregulation driven by pathogenic MAPK1 variants is stimulus reliant and retains dependence on MEK activity. Our data support a model in which the identified pathogenic variants operate with counteracting effects on MAPK1 function by differentially impacting the ability of the kinase to interact with regulators and substrates, which likely explains the minor role of these variants as driver events contributing to oncogenesis. After nearly 20 years from the discovery of the first gene implicated in Noonan syndrome, PTPN11, the last tier of the MAPK cascade joins the group of genes mutated in RASopathies.


Assuntos
Carcinogênese/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome de Noonan/genética , Pré-Escolar , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia , Síndrome de Noonan/fisiopatologia , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Transdução de Sinais , Sequenciamento do Exoma , Proteínas ras/genética
7.
Clin Genet ; 104(1): 136-138, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36757675

RESUMO

Noonan syndrome (NS) belongs to RASopathies, a family of disorders caused by unregulated signaling through the RAS-MAPK pathway. Herein, we report on an individual with molecularly confirmed diagnosis of NS showing asymptomatic enlarged spinal nerve roots, which are distinctive features of neurofibromatosis type 1. To date, a total of 16 patients with neurogenic tumors resembling neurofibromas/schwannomas and a molecularly confirmed diagnosis of a non-NF1 RASopathy have been reported, adding this further feature shared among RASopathies.


Assuntos
Neurofibromatoses , Neurofibromatose 1 , Síndrome de Noonan , Humanos , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neurofibromatose 1/complicações , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Raízes Nervosas Espinhais/diagnóstico por imagem , Mutação
8.
Haematologica ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37981895

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a rare, generally aggressive myeloproliferative neoplasm affecting young children. It is characterized by granulomonocytic expansion, with monocytosis infiltrating peripheral tissues. JMML is initiated by mutations upregulating RAS signaling. Approximately 10% of cases remain without an identified driver event. Exome sequencing of 2 unrelated cases of familial JMML of unknown genetics and analysis of the French JMML cohort identified 11 patients with variants in SH2B3, encoding LNK, a negative regulator of the JAK-STAT pathway. All variants were absent from healthy population databases, and mutation spectrum was consistent with a loss of function of the LNK protein. A stoploss variant was shown to affect both protein synthesis and stability. The other variants were either truncating or missense, the latter affecting the SH2 domain that interacts with activated JAK. Of the 11 patients, 8 from 5 families inherited pathogenic bi-allelic SH2B3 germline variants from their unaffected heterozygous parents. These children represent half of the cases with no identified causal mutation in the French cohort. They displayed typical clinical and hematological JMML features with neonatal onset and marked thrombocytopenia. They were characterized by absence of additional genetic alterations and a hypomethylated DNA profile with fetal characteristics. All patients showed partial or complete spontaneous clinical resolution. However, progression to thrombocythemia and immunity-related pathologies may be of concern later in life. Bi-allelic SH2B3 germline mutations thus define a new condition predisposing to a JMML-like disorder, suggesting that the JAK pathway deregulation is capable of initiating JMML, and opening new therapeutic options.

9.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175696

RESUMO

Induced pluripotent stem cells (iPSCs) have been established as a reliable in vitro disease model system and represent a particularly informative tool when animal models are not available or do not recapitulate the human pathophenotype. The recognized limit in using this technology is linked to some degree of variability in the behavior of the individual patient-derived clones. The development of CRISPR/Cas9-based gene editing solves this drawback by obtaining isogenic iPSCs in which the genetic lesion is corrected, allowing a straightforward comparison with the parental patient-derived iPSC lines. Here, we report the generation of a footprint-free isogenic cell line of patient-derived TBCD-mutated iPSCs edited using the CRISPR/Cas9 and piggyBac technologies. The corrected iPSC line had no genetic footprint after the removal of the selection cassette and maintained its "stemness". The correction of the disease-causing TBCD missense substitution restored proper protein levels of the chaperone and mitotic spindle organization, as well as reduced cellular death, which were used as read-outs of the TBCD KO-related endophenotype. The generated line represents an informative in vitro model to understand the impact of pathogenic TBCD mutations on nervous system development and physiology.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Sistemas CRISPR-Cas/genética , Endofenótipos , Diferenciação Celular/genética , Edição de Genes , Mutação , Proteínas Associadas aos Microtúbulos/metabolismo
10.
Am J Hum Genet ; 104(6): 1223-1232, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130282

RESUMO

Aberrant signaling through pathways controlling cell response to extracellular stimuli constitutes a central theme in disorders affecting development. Signaling through RAS and the MAPK cascade controls a variety of cell decisions in response to cytokines, hormones, and growth factors, and its upregulation causes Noonan syndrome (NS), a developmental disorder whose major features include a distinctive facies, a wide spectrum of cardiac defects, short stature, variable cognitive impairment, and predisposition to malignancies. NS is genetically heterogeneous, and mutations in more than ten genes have been reported to underlie this disorder. Despite the large number of genes implicated, about 10%-20% of affected individuals with a clinical diagnosis of NS do not have mutations in known RASopathy-associated genes, indicating that additional unidentified genes contribute to the disease, when mutated. By using a mixed strategy of functional candidacy and exome sequencing, we identify RRAS2 as a gene implicated in NS in six unrelated subjects/families. We show that the NS-causing RRAS2 variants affect highly conserved residues localized around the nucleotide binding pocket of the GTPase and are predicted to variably affect diverse aspects of RRAS2 biochemical behavior, including nucleotide binding, GTP hydrolysis, and interaction with effectors. Additionally, all pathogenic variants increase activation of the MAPK cascade and variably impact cell morphology and cytoskeletal rearrangement. Finally, we provide a characterization of the clinical phenotype associated with RRAS2 mutations.


Assuntos
Mutação com Ganho de Função , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Síndrome de Noonan/etiologia , Adulto , Criança , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Síndrome de Noonan/patologia , Linhagem , Conformação Proteica
11.
Am J Hum Genet ; 105(3): 493-508, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447100

RESUMO

Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.


Assuntos
Senescência Celular/fisiologia , Histonas/fisiologia , Aneuploidia , Nucléolo Celular/metabolismo , Criança , Cromatina/metabolismo , Metilação de DNA , Feminino , Histonas/química , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
12.
Am J Med Genet A ; 188(2): 422-430, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913244

RESUMO

Costello syndrome (CS) is a neurodevelopmental disorder with a distinctive musculoskeletal phenotype and reduced bone mineral density (BMD) caused by activating de novo mutations in the HRAS gene. Herein, we report the results of a prospective study evaluating the efficacy of a 4-year vitamin D supplementation on BMD and bone health. A cohort of 16 individuals ranging from pediatric to adult age with molecularly confirmed CS underwent dosages of bone metabolism biomarkers (serum/urine) and dual-energy X-ray absorptiometry (DXA) scans to assess bone and body composition parameters. Results were compared to age-matched control groups. At baseline evaluation, BMD was significantly reduced (p ≤ 0.05) compared to controls, as were the 25(OH)vitD levels. Following the 4-year time interval, despite vitamin D supplementation therapy at adequate dosages, no significant improvement in BMD was observed. The present data confirm that 25(OH)vitD and BMD parameters are reduced in CS, and vitamin D supplementation is not sufficient to restore proper BMD values. Based on this evidence, routine monitoring of bone homeostasis to prevent bone deterioration and possible fractures in adult patients with CS is highly recommended.


Assuntos
Síndrome de Costello , Absorciometria de Fóton , Densidade Óssea , Osso e Ossos , Criança , Síndrome de Costello/complicações , Síndrome de Costello/genética , Seguimentos , Homeostase , Humanos , Estudos Prospectivos , Vitamina D/uso terapêutico
13.
Am J Med Genet A ; 188(2): 414-421, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854525

RESUMO

Cardio-facio-cutaneous syndrome (CFCS) is a rare disorder characterized by distinctive craniofacial appearance, cardiac, neurologic, cutaneous, and musculoskeletal abnormalities. It is due to heterozygous mutations in BRAF, MAP2K1, MAP2K2, and KRAS genes, belonging to the RAS/MAPK pathway. The role of RAS signaling in bone homeostasis is highly recognized, but data on bone mineral density (BMD) in CFCS are lacking. In the present study we evaluated bone parameters, serum and urinary bone metabolites in 14 individuals with a molecularly confirmed diagnosis of CFCS. Bone assessment was performed through dual X-ray absorptiometry (DXA); height-adjusted results were compared to age- and sex-matched controls. Blood and urinary bone metabolites were also analyzed and compared to the reference range. Despite vitamin D supplementation and almost normal bone metabolism biomarkers, CFCS patients showed significantly decreased absolute values of DXA-assessed subtotal and lumbar BMD (p ≤ 0.05), compared to controls. BMD z-scores and t-scores (respectively collected for children and adults) were below the reference range in CFCS, while normal in healthy controls. These findings confirmed a reduction in BMD in CFCS and highlighted the importance of monitoring bone health in these affected individuals.


Assuntos
Displasia Ectodérmica , Insuficiência de Crescimento , Absorciometria de Fóton , Adulto , Densidade Óssea/genética , Criança , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Fácies , Insuficiência de Crescimento/genética , Cardiopatias Congênitas , Homeostase , Humanos
14.
Clin Genet ; 99(3): 457-461, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33354767

RESUMO

The RASopathies are a family of clinically related disorders caused by mutations affecting genes participating in the RAS-MAPK signaling cascade. Among them, Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML) are allelic conditions principally associated with dominant mutations in PTPN11, which encodes the nonreceptor SH2 domain-containing protein tyrosine phosphatase SHP2. Individual PTPN11 mutations are specific to each syndrome and have opposite consequences on catalysis, but all favor SHP2's interaction with signaling partners. Here, we report on a subject with NS harboring biallelic variants in PTPN11. While the former (p.Leu261Phe) had previously been reported in NS, the latter (p.Thr357Met) is a novel change impairing catalysis. Members of the family carrying p.Thr357Met, however, did not show any obvious feature fitting NSML or within the RASopathy phenotypic spectrum. A major impact of this change on transcript processing and protein stability was excluded. These findings further support the view that NSML cannot be ascribed merely to impaired SHP2's catalytic activity and suggest that PTPN11 mutations causing this condition act through an alternative dominant mechanism.


Assuntos
Variação Genética , Síndrome LEOPARD/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Alelos , Substituição de Aminoácidos , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Mutação de Sentido Incorreto , Linhagem , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/química
15.
Hum Mutat ; 41(6): 1171-1182, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112654

RESUMO

Germline PTPN11 mutations cause Noonan syndrome (NS), the most common disorder among RASopathies. PTPN11 encodes SHP2, a protein tyrosine-phosphatase controlling signaling through the RAS-MAPK and PI3K-AKT pathways. Generally, NS-causing PTPN11 mutations are missense changes destabilizing the inactive conformation of the protein or enhancing its binding to signaling partners. Here, we report on two PTPN11 variants resulting in the deletion or duplication of one of three adjacent glutamine residues (Gln255 -to-Gln257 ). While p.(Gln257dup) caused a typical NS phenotype in carriers of a first family, p.(Gln257del) had incomplete penetrance in a second family. Missense mutations involving Gln256 had previously been reported in NS. This poly-glutamine stretch is located on helix B of the PTP domain, a region involved in stabilizing SHP2 in its autoinhibited state. Molecular dynamics simulations predicted that changes affecting this motif perturb the SHP2's catalytically inactive conformation and/or substrate recognition. Biochemical data showed that duplication and deletion of Gln257 variably enhance SHP2's catalytic activity, while missense changes involving Gln256 affect substrate specificity. Expression of mutants in HEK293T cells documented their activating role on MAPK signaling, uncoupling catalytic activity and modulation of intracellular signaling. These findings further document the relevance of helix B in the regulation of SHP2's function.


Assuntos
Síndrome de Noonan/genética , Peptídeos/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Adolescente , Criança , Pré-Escolar , Feminino , Glutamina/genética , Células HEK293 , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Domínios Proteicos , Transdução de Sinais
16.
Am J Hum Genet ; 99(4): 974-983, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666369

RESUMO

Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration.


Assuntos
Encefalopatias/complicações , Encefalopatias/genética , Chaperonas Moleculares/genética , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/genética , Mutação/genética , Adolescente , Idade de Início , Animais , Criança , Feminino , Fibroblastos , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Chaperonas Moleculares/metabolismo , Nocodazol/farmacologia , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/metabolismo , Adulto Jovem
17.
Am J Hum Genet ; 99(4): 962-973, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666370

RESUMO

Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αß-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective ß-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/ß-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with impact on neuronal function and survival in the developing brain.


Assuntos
Alelos , Encefalopatias/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Dobramento de Proteína , Tubulina (Proteína)/metabolismo , Adolescente , Idade de Início , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/patologia , Proliferação de Células , Pré-Escolar , Feminino , Fibroblastos , Humanos , Lactente , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/química
19.
Hum Mutat ; 38(7): 798-804, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390077

RESUMO

RASopathies are a group of rare, clinically related conditions affecting development and growth, and are caused by germline mutations in genes encoding signal transducers and modulators with a role in the RAS signaling network. These disorders share facial dysmorphia, short stature, variable cognitive deficits, skeletal and cardiac defects, and a variable predisposition to malignancies. Here, we report on a de novo 10-nucleotide-long deletion in HRAS (c.481_490delGGGACCCTCT, NM_176795.4; p.Leu163ProfsTer52, NP_789765.1) affecting transcript processing as a novel event underlying a RASopathy characterized by developmental delay, intellectual disability and autistic features, distinctive coarse facies, reduced growth, and ectodermal anomalies. Molecular and biochemical studies demonstrated that the deletion promotes constitutive retention of exon IDX, which is generally skipped during HRAS transcript processing, and results in a stable and mildly hyperactive GDP/GTP-bound protein that is constitutively targeted to the plasma membrane. Our findings document a new mechanism leading to altered HRAS function that underlies a previously unappreciated phenotype within the RASopathy spectrum.


Assuntos
Deficiências do Desenvolvimento/genética , Regulação Neoplásica da Expressão Gênica , Genes ras , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Transtorno Autístico/genética , Células COS , Membrana Celular/metabolismo , Criança , Pré-Escolar , Chlorocebus aethiops , Éxons , Fácies , Deleção de Genes , Mutação em Linhagem Germinativa , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , RNA Mensageiro/metabolismo , Transdução de Sinais
20.
Hum Mutat ; 38(4): 451-459, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28074573

RESUMO

Germline mutations in PTPN11, the gene encoding the Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2), cause Noonan syndrome (NS), a relatively common, clinically variable, multisystem disorder. Here, we report on the identification of five different PTPN11 missense changes affecting residues Leu261 , Leu262 , and Arg265 in 16 unrelated individuals with clinical diagnosis of NS or with features suggestive for this disorder, specifying a novel disease-causing mutation cluster. Expression of the mutant proteins in HEK293T cells documented their activating role on MAPK signaling. Structural data predicted a gain-of-function role of substitutions at residues Leu262 and Arg265 exerted by disruption of the N-SH2/PTP autoinhibitory interaction. Molecular dynamics simulations suggested a more complex behavior for changes affecting Leu261 , with possible impact on SHP2's catalytic activity/selectivity and proper interaction of the PTP domain with the regulatory SH2 domains. Consistent with that, biochemical data indicated that substitutions at codons 262 and 265 increased the catalytic activity of the phosphatase, while those affecting codon 261 were only moderately activating but impacted substrate specificity. Remarkably, these mutations underlie a relatively mild form of NS characterized by low prevalence of cardiac defects, short stature, and cognitive and behavioral issues, as well as less evident typical facial features.


Assuntos
Predisposição Genética para Doença/genética , Mutação , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Síndrome de Noonan/patologia , Ligação Proteica , Domínios Proteicos , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA