Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Hum Mol Genet ; 31(17): 2951-2963, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35416977

RESUMO

Pierpont syndrome is a rare disorder characterized mainly by global developmental delay, unusual facial features, altered fat distribution in the limbs and hearing loss. A specific mutation (p.Tyr446Cys) in TBL1XR1, encoding a WD40 repeat-containing protein, which is a component of the SMRT/NCoR (silencing mediator retinoid and thyroid hormone receptors/nuclear receptor corepressors), has been reported as the genetic cause of Pierpont syndrome. Here, we used CRISPR-cas9 technology to generate a mutant mouse with the Y446C mutation in Tbl1xr1, which is also present in Pierpont syndrome. Several aspects of the phenotype were studied in the mutant mice: growth, body composition, hearing, motor behavior, thyroid hormone state and lipid and glucose metabolism. The mutant mice (Tbl1xr1Y446C/Y446C) displayed delayed growth, altered body composition with increased relative lean mass and impaired hearing. Expression of several genes involved in fatty acid metabolism differed in white adipose tissue, but not in liver or muscle of mutant mice compared to wild-type mice (Tbl1xr1+/+). No difference in thyroid hormone plasma concentrations was observed. Tbl1xr1Y446C/Y446C mice can be used as a model for distinct features of Pierpont syndrome, which will enable future studies on the pathogenic mechanisms underlying the various phenotypic characteristics.


Assuntos
Proteínas Nucleares , Proteínas Repressoras , Animais , Deficiências do Desenvolvimento , Modelos Animais de Doenças , Fácies , Lipomatose , Camundongos , Mutação , Proteínas Nucleares/genética , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Proteínas Repressoras/genética , Hormônios Tireóideos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38856700

RESUMO

OBJECTIVES: The use of levothyroxine (LT4) treatment aiming to improve fertility in euthyroid women with positive thyroid peroxidase antibodies (TPOAb) is not supported by the available evidence. The aim of the study was to document the use of LT4 by European thyroid specialists in such patients. DESIGN: The data presented derive from Treatment of Hypothyroidism in Europe by Specialists, an International Survey (THESIS), a questionnaire conducted between 2019 and 2021 to document the management of hypothyroidism by European thyroid specialists. Here, we report the aggregate results on the use of LT4 in infertile, euthyroid women with positive TPOAb. RESULTS: A total of 2316/5406 (42.8%) respondents stated that LT4 may be indicated in TPOAb positive euthyroid women with infertility. The proportion of those replying positively to this question varied widely across different countries (median 39.4, range 22.9%-83.7%). In multivariate analyses males (OR: 0.8; CI: 0.7-0.9) and respondents >60 years (OR: 0.7; 0.6-0.8) were the least inclined to consider LT4 for this indication. Conversely, respondents managing many thyroid patients ("weekly" [OR: 1.4; CI: 1.0-1.9], "daily" [OR: 1.8; CI: 1.3-2.4]) and practicing in Eastern Europe (OR: 1.5; CI: 1.3-1.9) were most likely to consider LT4. CONCLUSIONS: A remarkably high number of respondents surveyed between 2019 and 2021, would consider LT4 treatment in TPOAb positive euthyroid women with infertility. This view varied widely across countries and correlated with sex, age and workload, potentially influencing patient management. These results raise concerns about potential risks of overtreatment.

3.
Acta Neuropathol ; 147(1): 64, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556574

RESUMO

Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.


Assuntos
Síndrome de Prader-Willi , Humanos , Camundongos , Animais , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/psicologia , Microglia , Proteínas de Transporte/genética , Fenótipo , Fagossomos , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328354

RESUMO

Obesity and type 2 diabetes mellitus (T2DM) are highly prevalent disorders, associated with insulin resistance and chronic inflammation. The brain is key for energy homeostasis and contains many insulin receptors. Microglia, the resident brain immune cells, are known to express insulin receptors (InsR) and to be activated by a hypercaloric environment. The aim of this study was to evaluate whether microglial insulin signaling is involved in the control of systemic energy homeostasis and whether this function is sex-dependent. We generated a microglia-specific knockout of the InsR gene in male and female mice and exposed them to control or obesogenic dietary conditions. Following 10 weeks of diet exposure, we evaluated insulin tolerance, energy metabolism, microglial morphology and phagocytic function, and neuronal populations. Lack of microglial InsR resulted in increased plasma insulin levels and insulin resistance in obese female mice. In the brain, loss of microglial InsR led to a decrease in microglial primary projections in both male and female mice, irrespective of the diet. In addition, in obese male mice lacking microglial InsR the number of proopiomelanocortin neurons was decreased, compared to control diet, while no differences were observed in female mice. Our results demonstrate a sex-dependent effect of microglial InsR-signaling in physiology and obesity, and stress the importance of a heterogeneous approach in the study of diseases such as obesity and T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microglia/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
5.
Genet Med ; 23(4): 629-636, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442024

RESUMO

PURPOSE: SOX10 variants previously implicated in Waardenburg syndrome (WS) have now been linked to Kallmann syndrome (KS), the anosmic form of idiopathic hypogonadotropic hypogonadism (IHH). We investigated whether SOX10-associated WS and IHH represent elements of a phenotypic continuum within a unifying disorder or if they represent phenotypically distinct allelic disorders. METHODS: Exome sequencing from 1,309 IHH subjects (KS: 632; normosmic idiopathic hypogonadotropic hypogonadism [nIIHH]: 677) were reviewed for SOX10 rare sequence variants (RSVs). The genotypic and phenotypic spectrum of SOX10-related IHH (this study and literature) and SOX10-related WS cases (literature) were reviewed and compared with SOX10-RSV spectrum in gnomAD population. RESULTS: Thirty-seven SOX10-associated IHH cases were identified as follows: current study: 16 KS; 4 nIHH; literature: 16 KS; 1 nIHH. Twenty-three IHH cases (62%; all KS), had ≥1 known WS-associated feature(s). Moreover, five previously reported SOX10-associated WS cases showed IHH-related features. Four SOX10 missense RSVs showed allelic overlap between IHH-ascertained and WS-ascertained cases. The SOX10-HMG domain showed an enrichment of RSVs in disease states versus gnomAD. CONCLUSION: SOX10 variants contribute to both anosmic (KS) and normosmic (nIHH) forms of IHH. IHH and WS represent SOX10-associated developmental defects that lie along a unifying phenotypic continuum. The SOX10-HMG domain is critical for the pathogenesis of SOX10-related human disorders.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Fatores de Transcrição SOXE/genética , Síndrome de Waardenburg , Genótipo , Humanos , Hipogonadismo/genética , Mutação , Síndrome de Waardenburg/genética
6.
Biochem Soc Trans ; 48(3): 915-931, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32412045

RESUMO

Type 1 diabetes (T1D) and Hashimoto's thyroiditis (HT) are the two most common autoimmune endocrine diseases that have rising global incidence. These diseases are caused by the immune-mediated destruction of hormone-producing endocrine cells, pancreatic beta cells and thyroid follicular cells, respectively. Both genetic predisposition and environmental factors govern the onset of T1D and HT. Recent evidence strongly suggests that the intestinal microbiota plays a role in accelerating or preventing disease progression depending on the compositional and functional profile of the gut bacterial communities. Accumulating evidence points towards the interplay between the disruption of gut microbial homeostasis (dysbiosis) and the breakdown of host immune tolerance at the onset of both diseases. In this review, we will summarize the major recent findings about the microbiome alterations associated with T1D and HT, and the connection of these changes to disease states. Furthermore, we will discuss the potential mechanisms by which gut microbial dysbiosis modulates the course of the disease, including disruption of intestinal barrier integrity and microbial production of immunomodulatory metabolites. The aim of this review is to provide broad insight into the role of gut microbiome in the pathophysiology of these diseases.


Assuntos
Doenças do Sistema Endócrino/metabolismo , Microbioma Gastrointestinal , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Progressão da Doença , Disbiose/imunologia , Disbiose/microbiologia , Doenças do Sistema Endócrino/imunologia , Doenças do Sistema Endócrino/microbiologia , Ácidos Graxos Voláteis/metabolismo , Predisposição Genética para Doença , Doença de Hashimoto/imunologia , Doença de Hashimoto/microbiologia , Homeostase , Humanos , Incidência , Permeabilidade
7.
Diabetologia ; 62(4): 704-716, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30737520

RESUMO

AIMS/HYPOTHESIS: Animal studies have indicated that disturbed diurnal rhythms of clock gene expression in adipose tissue can induce obesity and type 2 diabetes. The importance of the circadian timing system for energy metabolism is well established, but little is known about the diurnal regulation of (clock) gene expression in obese individuals with type 2 diabetes. In this study we aimed to identify key disturbances in the diurnal rhythms of the white adipose tissue transcriptome in obese individuals with type 2 diabetes. METHODS: In a case-control design, we included six obese individuals with type 2 diabetes and six healthy, lean control individuals. All participants were provided with three identical meals per day for 3 days at zeitgeber time (ZT, with ZT 0:00 representing the time of lights on) 0:30, 6:00 and 11:30. Four sequential subcutaneous abdominal adipose tissue samples were obtained, on day 2 at ZT 15:30, and on day 3 at ZT 0:15, ZT 5:45 and ZT 11:15. Gene expression was measured using RNA sequencing. RESULTS: The core clock genes showed reduced amplitude oscillations in the individuals with type 2 diabetes compared with the healthy control individuals. Moreover, in individuals with type 2 diabetes, only 1.8% (303 genes) of 16,818 expressed genes showed significant diurnal rhythmicity, compared with 8.4% (1421 genes) in healthy control individuals. Enrichment analysis revealed a loss of rhythm in individuals with type 2 diabetes of canonical metabolic pathways involved in the regulation of lipolysis. Enrichment analysis of genes with an altered mesor in individuals with type 2 diabetes showed decreased activity of the translation initiating pathway 'EIF2 signaling'. Individuals with type 2 diabetes showed a reduced diurnal rhythm in postprandial glucose concentrations. CONCLUSIONS/INTERPRETATION: Diurnal clock and metabolic gene expression rhythms are decreased in subcutaneous adipose tissue of obese individuals with type 2 diabetes compared with lean control participants. Future investigation is needed to explore potential treatment targets as identified by our study, including clock enhancement and induction of EIF2 signalling. DATA AVAILABILITY: The raw sequencing data and supplementary files for rhythmic expression analysis and Ingenuity Pathway Analysis have been deposited in NCBI Gene Expression Omnibus (GEO series accession number GSE104674).


Assuntos
Tecido Adiposo Branco/metabolismo , Ritmo Circadiano , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Transcriptoma , Fatores de Transcrição ARNTL/genética , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Criptocromos/genética , Comportamento Alimentar , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas Circadianas Period/genética , Período Pós-Prandial , Análise de Sequência de RNA
8.
J Med Genet ; 55(10): 693-700, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30061370

RESUMO

BACKGROUND: Four genetic causes of isolated congenital central hypothyroidism (CeH) have been identified, but many cases remain unexplained. We hypothesised the existence of other genetic causes of CeH with a Mendelian inheritance pattern. METHODS: We performed exome sequencing in two families with unexplained isolated CeH and subsequently Sanger sequenced unrelated idiopathic CeH cases. We performed clinical and biochemical characterisation of the probands and carriers identified by family screening. We investigated IRS4 mRNA expression in human hypothalamus and pituitary tissue, and measured serum thyroid hormones and Trh and Tshb mRNA expression in hypothalamus and pituitary tissue of Irs4 knockout mice. RESULTS: We found mutations in the insulin receptor substrate 4 (IRS4) gene in two pairs of brothers with CeH (one nonsense, one frameshift). Sequencing of IRS4 in 12 unrelated CeH cases negative for variants in known genes yielded three frameshift mutations (two novel) in three patients and one male sibling. All male carriers (n=8) had CeH with plasma free thyroxine concentrations below the reference interval. MRI of the hypothalamus and pituitary showed no structural abnormalities (n=12). 24-hour thyroid-stimulating hormone (TSH) secretion profiles in two adult male patients showed decreased basal, pulsatile and total TSH secretion. IRS4 mRNA was expressed in human hypothalamic nuclei, including the paraventricular nucleus, and in the pituitary gland. Female knockout mice showed decreased pituitary Tshb mRNA levels but had unchanged serum thyroid hormone concentrations. CONCLUSIONS: Mutations in IRS4 are associated with isolated CeH in male carriers. As IRS4 is involved in leptin signalling, the phenotype may be related to disrupted leptin signalling.


Assuntos
Hipotireoidismo/genética , Proteínas Substratos do Receptor de Insulina/genética , Leptina/metabolismo , Transdução de Sinais , Tiroxina/sangue , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Hipotálamo/metabolismo , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Linhagem , Hipófise/metabolismo , Adulto Jovem
10.
FASEB J ; 31(10): 4545-4554, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28679529

RESUMO

Recent studies have shown that meal timing throughout the day contributes to maintaining or regaining weight after hypocaloric diets. Although brain serotonin and dopamine are well known to be involved in regulating feeding, it is unknown whether meal timing during energy restriction affects these neurotransmitter systems. We studied the effect of a 4 wk hypocaloric diet with either 50% of daily calories consumed at breakfast (BF group) or at dinner (D group) on hypothalamic and thalamic serotonin transporter (SERT) binding and on striatal dopamine transporter (DAT) binding. The BF and D groups lost a similar amount of weight. Striatal DAT and thalamic SERT binding increased in the BF group, while decreasing in the D group after the diet (ΔDAT 0.37 ± 0.63 vs. -0.53 ± 0.77, respectively; P = 0.005; ΔSERT 0.12 ± 0.25 vs. -0.13 ± 0.26 respectively, P = 0.032). Additional voxel-based analysis showed an increase in DAT binding in the ventral striatum in the BF group and a decrease in the dorsal striatum in the D group. During weight loss, striatal DAT and thalamic SERT binding increased weight independently when 50% of daily calories were consumed at breakfast, whereas it decreased when caloric intake was highest at dinner. These findings may contribute to the earlier reported favorable effect of meal timing on weight maintenance after hypocaloric diets.-Versteeg, R. I., Schrantee, A., Adriaanse, S. M., Unmehopa, U. A., Booij, J., Reneman, L., Fliers, E., la Fleur, S. E., Serlie, M. J. Timing of caloric intake during weight loss differentially affects striatal dopamine transporter and thalamic serotonin transporter binding.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Ingestão de Energia/fisiologia , Obesidade/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Redução de Peso/fisiologia , Idoso , Idoso de 80 Anos ou mais , Peso Corporal/fisiologia , Corpo Estriado/metabolismo , Dieta Redutora , Dopamina/metabolismo , Comportamento Alimentar/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Serotonina/metabolismo , Fatores de Tempo
11.
Neuroendocrinology ; 107(3): 267-279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092582

RESUMO

BACKGROUND: Cold exposure increases thyrotropin-releasing hormone (TRH) expression primarily in the hypothalamic paraventricular nucleus (PVN). The PVN is a well-known hypothalamic hub in the control of energy metabolism. TRH terminals and receptors are found on PVN neurons. We hypothesized that TRH release in the PVN plays an important role in the control of thermogenesis and energy mobilization during cold exposure. METHODS: Male Wistar rats were exposed to a cold environment (4°C) or TRH retrodialysis in the PVN for 2 h. We compared the effects of cold exposure and TRH administration in the PVN on plasma glucose, corticosterone, and thyroid hormone concentrations, body temperature, locomotor activity, as well as metabolic gene expression in the liver and brown adipose tissue. RESULTS: Cold exposure increased body temperature, locomotor activity, and plasma corticosterone concentrations, but blood glucose concentrations were similar to that of room temperature control animals. TRH administration in the PVN also promptly increased body temperature, locomotor activity and plasma corticosterone concentrations. However, TRH administration in the PVN markedly increased blood glucose concentrations and endogenous glucose production (EGP) compared to saline controls. Selective hepatic sympathetic or parasympathetic denervation reduced the TRH-induced increase in glucose concentrations and EGP. Gene expression data indicated increased gluconeogenesis in liver and lipolysis in brown adipose tissue, both after cold exposure and TRH administration. CONCLUSIONS: We conclude that TRH administration in the rat PVN largely mimics the metabolic and behavioral changes induced by cold exposure indicating a potential link between TRH release in the PVN and cold defense.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Hormônio Liberador de Tireotropina/farmacologia , Animais , Glicemia , Temperatura Corporal/fisiologia , Temperatura Baixa , Corticosterona/sangue , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Wistar , Termogênese/fisiologia , Hormônios Tireóideos/sangue
12.
Diabetologia ; 60(7): 1333-1343, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28374068

RESUMO

AIMS/HYPOTHESIS: Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. METHODS: Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. RESULTS: LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p < 0.001), whereas LAN exposure at the end of the dark phase, at ZT21, caused increased insulin responses during the first 10 min (p < 0.01), indicating that LAN immediately induces glucose intolerance in rats. Subsequent experiments demonstrated that the effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. CONCLUSIONS/INTERPRETATION: Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.


Assuntos
Glicemia/análise , Ritmo Circadiano/fisiologia , Luz/efeitos adversos , Animais , Encéfalo/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Teste de Tolerância a Glucose , Homeostase , Insulina/análise , Masculino , Melatonina/metabolismo , Movimento , Ratos , Ratos Wistar , Retina/fisiologia , Retina/fisiopatologia , Fatores de Tempo
13.
Genes Cells ; 21(1): 6-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26567532

RESUMO

The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to synchronize the tissue-specific rhythms of the peripheral clocks with the environmental day/night changes via neural, humoral and/or behavioral connections. The feeding rhythm is considered an important Zeitgeber for peripheral clocks, as daytime feeding reverses (clock) gene rhythms in the periphery, but not in the SCN. In this study, we investigated the necessity of a daily feeding rhythm for maintaining gene expression rhythms in epididymal white adipose tissue (eWAT). We showed that 7 of 9 rhythmic metabolic/adipokine genes, but not clock genes, lost their rhythmicity upon exposure to 6-meals-a-day feeding. Previously, we showed comparable effects of adrenalectomy on eWAT; therefore, subsequently we investigated the effect of simultaneous disruption of these humoral and behavioral signaling pathways, by exposing adrenalectomized animals to 6-meals-a-day feeding. Interestingly, under these conditions, all the clock genes and 10 of 11 rhythmic metabolic/adipokine genes lost their rhythmicity. These data indicate that adrenal hormones and feeding rhythm are indispensable for maintaining daily rhythms in metabolic/adipokine gene, but not clock gene, expression in eWAT. In contrast, at least one of these two signals should be present in order for eWAT clock gene rhythms to be maintained.


Assuntos
Tecido Adiposo Branco/metabolismo , Adrenalectomia , Epididimo/metabolismo , Comportamento Alimentar , Perfilação da Expressão Gênica , Refeições , Adipocinas/genética , Adipocinas/metabolismo , Animais , Relógios Biológicos/genética , Peso Corporal/genética , Ritmo Circadiano/genética , Corticosterona/sangue , Regulação da Expressão Gênica , Insulina/sangue , Masculino , Ratos , Triglicerídeos/sangue
14.
Neuroendocrinology ; 105(2): 141-149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27626923

RESUMO

BACKGROUND: Altered brain dopaminergic and serotonergic pathways have been shown in obese rodents and humans, but it is unknown whether this is related to obesity per se or to the metabolic derangements associated with obesity. METHODS: We performed a case-control study in insulin-sensitive obese (ISO) and insulin-resistant obese (IRO) subjects (n = 12) and age-matched lean controls (n = 8) and measured serotonin transporter (SERT) binding in the whole diencephalon and specifically in the hypothalamus, as well as dopamine transporter (DAT) binding in the striatum using 123I- FP-CIT single-photon emission computed tomography. We assessed insulin sensitivity using the homeostatic model assessment of insulin resistance. RESULTS: BMI did not differ between the IRO and ISO subjects. SERT binding in the diencephalon was significantly lower in IRO than in ISO subjects, but was not different between lean and obese subjects. SERT binding in the hypothalamus tended to be reduced in obese versus lean subjects, but was not different between IRO and ISO subjects. Striatal DAT binding was similar between lean and obese subjects as well as between ISO and IRO subjects. CONCLUSIONS: We conclude that SERT binding in the diencephalon is reduced in insulin-resistant subjects independently of body weight, while hypothalamic SERT binding tends to be lower in obesity, with no difference between insulin-resistant and insulin-sensitive subjects. This suggests that the metabolic perturbations associated with obesity independently affect SERT binding within the diencephalon.


Assuntos
Diencéfalo/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Índice de Massa Corporal , Mapeamento Encefálico , Estudos de Casos e Controles , Diencéfalo/diagnóstico por imagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Obesidade/diagnóstico por imagem , Ligação Proteica , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos
15.
J Med Genet ; 53(5): 330-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26769062

RESUMO

BACKGROUND: The combination of developmental delay, facial characteristics, hearing loss and abnormal fat distribution in the distal limbs is known as Pierpont syndrome. The aim of the present study was to detect and study the cause of Pierpont syndrome. METHODS: We used whole-exome sequencing to analyse four unrelated individuals with Pierpont syndrome, and Sanger sequencing in two other unrelated affected individuals. Expression of mRNA of the wild-type candidate gene was analysed in human postmortem brain specimens, adipose tissue, muscle and liver. Expression of RNA in lymphocytes in patients and controls was additionally analysed. The variant protein was expressed in, and purified from, HEK293 cells to assess its effect on protein folding and function. RESULTS: We identified a single heterozygous missense variant, c.1337A>G (p.Tyr446Cys), in transducin ß-like 1 X-linked receptor 1 (TBL1XR1) as disease-causing in all patients. TBL1XR1 mRNA expression was demonstrated in pituitary, hypothalamus, white and brown adipose tissue, muscle and liver. mRNA expression is lower in lymphocytes of two patients compared with the four controls. The mutant TBL1XR1 protein assembled correctly into the nuclear receptor corepressor (NCoR)/ silencing mediator for retinoid and thyroid receptors (SMRT) complex, suggesting a dominant-negative mechanism. This contrasts with loss-of-function germline TBL1XR1 deletions and other TBL1XR1 mutations that have been implicated in autism. However, autism is not present in individuals with Pierpont syndrome. CONCLUSIONS: This study identifies a specific TBL1XR1 mutation as the cause of Pierpont syndrome. Deletions and other mutations in TBL1XR1 can cause autism. The marked differences between Pierpont patients with the p.Tyr446Cys mutation and individuals with other mutations and whole gene deletions indicate a specific, but as yet unknown, disease mechanism of the TBL1XR1 p.Tyr446Cys mutation.


Assuntos
Expressão Gênica , Lipomatose/metabolismo , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Adulto , Criança , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Fácies , Feminino , Humanos , Lipomatose/genética , Lipomatose/patologia , Masculino , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Especificidade de Órgãos , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Adulto Jovem
16.
Eur J Neurosci ; 44(10): 2795-2806, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27562056

RESUMO

Shiftworkers run an increased risk of developing metabolic disorders, presumably as a result of disturbed circadian physiology. Eating at a time-of-day that is normally dedicated to resting and fasting, may contribute to this association. The hypothalamus is the key brain area that integrates different inputs, including environmental time information from the central biological clock in the suprachiasmatic nuclei, with peripheral information on energy status to maintain energy homeostasis. The orexin system within the lateral hypothalamus is an important output of the suprachiasmatic nuclei involved in the control of sleep/wake behavior and glucose homeostasis, among other functions. In this study, we tested the hypothesis that feeding during the rest period disturbs the orexin system as a possible underlying contributor to metabolic health problems. Male Wistar rats were exposed to an 8-week protocol in which food was available ad libitum for 24-h, for 12-h during the light phase (i.e., unnatural feeding time) or for 12-h during the dark phase (i.e., restricted feeding, but at the natural time-of-day). Animals forced to eat at an unnatural time, i.e., during the light period, showed no changes in orexin and orexin-receptor gene expression in the hypothalamus, but the rhythmic expression of clock genes in the lateral hypothalamus was absent in these animals. Light fed animals did show adverse changes in whole-body physiology and internal desynchronization of muscle and liver clock and metabolic gene expression. Eating at the 'wrong' time-of-day thus causes internal desynchronization at different levels, which in the long run may disrupt body physiology.


Assuntos
Ciclos de Atividade , Ritmo Circadiano , Comportamento Alimentar , Fígado/fisiologia , Músculo Esquelético/fisiologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Masculino , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Ratos , Ratos Wistar
17.
Neuroendocrinology ; 103(3-4): 408-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26336917

RESUMO

BACKGROUND: Loss-of-function mutations in immunoglobulin superfamily member 1 (IGSF1) cause an X-linked syndrome of central hypothyroidism, macroorchidism, delayed pubertal testosterone rise, variable prolactin deficiency and variable partial GH deficiency in childhood. The clinical features and gene expression pattern suggest a pivotal role for IGSF1 in the pituitary, but detailed knowledge on pituitary hormone secretion in this syndrome is lacking. We therefore aimed to study the 24-hour pituitary hormone secretion in male patients with IGSF1 deficiency. METHODS: We collected blood samples every 10 min for 24 h in eight adult male IGSF1-deficient patients and measured circulating TSH, prolactin and gonadotropins. Deconvolution, modified cosinor and approximate entropy analyses were applied to quantify secretion rates, diurnal rhythmicity and regularity of hormone release. Results were compared to healthy controls matched for age and body mass index. RESULTS: Compared to healthy controls, IGSF1-deficient patients showed decreased pulsatile secretion of TSH with decreased disorderliness and reduced diurnal variation. Basal and pulsatile secretion of FSH was increased by over 200%, while LH secretion did not differ from healthy controls. We observed a bimodal distribution of prolactin secretion, i.e. severe deficiency in three and increased basal and total secretion in the other five patients. CONCLUSION: The altered TSH secretion pattern is consistent with the previously hypothesized defect in thyrotropin-releasing hormone signaling in IGSF1 deficiency. However, the phenotype is more extensive and includes increased FSH secretion without altered LH secretion as well as either undetectable or increased prolactin secretion.


Assuntos
Doenças Genéticas Inatas/metabolismo , Imunoglobulinas/deficiência , Proteínas de Membrana/deficiência , Tireotropina/metabolismo , Adulto , Idoso , Ritmo Circadiano , Humanos , Hormônio Luteinizante/metabolismo , Masculino , Pessoa de Meia-Idade , Paraproteinemias , Prolactina/metabolismo , Adulto Jovem
18.
Gynecol Endocrinol ; 32(2): 132-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26430806

RESUMO

Thyroid autoimmunity with normal thyroid function is associated with recurrent miscarriage (RM), but the association with live birth is less clear. Therefore, we determined the association between thyroid peroxidase antibodies (TPO-Ab) and live-birth rate (LBR) in a retrospective cohort of euthyroid women with unexplained RM. We included 202 women of which 28 were TPO-Ab positive (13.9%) and 174 were TPO-Ab negative. TPO-Ab positive women (n = 10) without levothyroxine treatment had a lower LBR (29%) compared to TPO-Ab negative women (51%) (HR 0.23, 0.07-0.72, p = 0.012). The LBR in women with TPO-Ab receiving levothyroxine was not different compared women without TPO-Ab (60% versus 51%, p = 0.50). In conclusion, TPO-Ab are associated with a lower LBR in euthyroid women with unexplained RM and these women may benefit from treatment with levothyroxine.


Assuntos
Aborto Habitual/sangue , Autoantígenos/imunologia , Iodeto Peroxidase/imunologia , Proteínas de Ligação ao Ferro/imunologia , Nascido Vivo , Tiroxina/uso terapêutico , Adulto , Autoanticorpos/sangue , Feminino , Humanos , Gravidez , Estudos Retrospectivos
19.
Hepatology ; 60(2): 545-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24668862

RESUMO

UNLABELLED: American children consume up to 27% of calories from high-fat and high-sugar snacks. Both sugar and fat consumption have been implicated as a cause of hepatic steatosis and obesity but the effect of meal pattern is largely understudied. We hypothesized that a high meal frequency, compared to consuming large meals, is detrimental in the accumulation of intrahepatic and abdominal fat. To test this hypothesis, we randomized 36 lean, healthy men to a 40% hypercaloric diet for 6 weeks or a eucaloric control diet and measured intrahepatic triglyceride content (IHTG) using proton magnetic resonance spectroscopy ((1) H-MRS), abdominal fat using magnetic resonance imaging (MRI), and insulin sensitivity using a hyperinsulinemic euglycemic clamp with a glucose isotope tracer before and after the diet intervention. The caloric surplus consisted of fat and sugar (high-fat-high-sugar; HFHS) or sugar only (high-sugar; HS) and was consumed together with, or between, the three main meals, thereby increasing meal size or meal frequency. All hypercaloric diets similarly increased body mass index (BMI). Increasing meal frequency significantly increased IHTG (HFHS mean relative increase of 45%; P = 0.016 and HS mean relative increase of 110%; P = 0.047), whereas increasing meal size did not (2-way analysis of variance [ANOVA] size versus frequency P = 0.03). Abdominal fat increased in the HFHS-frequency group (+63.3 ± 42.8 mL; P = 0.004) and tended to increase in the HS-frequency group (+46.5 ± 50.7 mL; P = 0.08). Hepatic insulin sensitivity tended to decrease in the HFHS-frequency group while peripheral insulin sensitivity was not affected. CONCLUSION: A hypercaloric diet with high meal frequency increased IHTG and abdominal fat independent of caloric content and body weight gain, whereas increasing meal size did not. This study suggests that snacking, a common feature in the Western diet, independently contributes to hepatic steatosis and obesity. ( TRIAL REGISTRATION: www.clinicaltrials.gov; nr.NCT01297738.)


Assuntos
Gorduras na Dieta/efeitos adversos , Sacarose Alimentar/efeitos adversos , Fígado Gorduroso/etiologia , Obesidade/etiologia , Triglicerídeos/metabolismo , Gordura Abdominal/metabolismo , Adulto , Glicemia/metabolismo , Índice de Massa Corporal , Gorduras na Dieta/administração & dosagem , Sacarose Alimentar/administração & dosagem , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Fígado Gorduroso/metabolismo , Comportamento Alimentar/fisiologia , Técnica Clamp de Glucose , Humanos , Leptina/sangue , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Obesidade/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA