Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(40): e2306492120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748068

RESUMO

The ~2,000-km-long Central Range of New Guinea is a hotspot of modern carbon sequestration due to the chemical weathering of igneous rocks with steep topography in the warm wet tropics. These high mountains formed in a collision between the Australian plate and ophiolite-bearing volcanic arc terranes, but poor resolution of the uplift and exhumation history has precluded assessments of the impact on global climate change. Here, we develop a palinspastic reconstruction of the Central Range orogen with existing surface geological constraints and seismic data to generate time-temperature paths and estimate volumes of eroded material. New (U-Th)/He thermochronology data reveal rapid uplift and regional denudation between 10 and 6 Mya. Erosion fluxes from the palinspastic reconstruction, calibrated for time with the thermochronological data, were used as input to a coupled global climate and weathering model. This model estimates 0.6 to 1.2 °C of cooling associated with the Late Miocene rise of New Guinea due to increased silicate weathering alone, and this CO2 sink continues to the present. Our data and modeling experiments support the hypothesis that tropical arc-continent collision and the rise of New Guinea contributed to Neogene cooling due to increased silicate weathering.

2.
Proc Natl Acad Sci U S A ; 117(19): 10172-10180, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341149

RESUMO

The Great Unconformity marks a major gap in the continental geological record, separating Precambrian basement from Phanerozoic sedimentary rocks. However, the timing, magnitude, spatial heterogeneity, and causes of the erosional event(s) and/or depositional hiatus that lead to its development are unknown. We present field relationships from the 1.07-Ga Pikes Peak batholith in Colorado that constrain the position of Cryogenian and Cambrian paleosurfaces below the Great Unconformity. Tavakaiv sandstone injectites with an age of ≥676 ± 26 Ma cut Pikes Peak granite. Injection of quartzose sediment in bulbous bodies indicates near-surface conditions during emplacement. Fractured, weathered wall rock around Tavakaiv bodies and intensely altered basement fragments within unweathered injectites imply still earlier regolith development. These observations provide evidence that the granite was exhumed and resided at the surface prior to sand injection, likely before the 717-Ma Sturtian glaciation for the climate appropriate for regolith formation over an extensive region of the paleolandscape. The 510-Ma Sawatch sandstone directly overlies Tavakaiv-injected Pikes granite and drapes over core stones in Pikes regolith, consistent with limited erosion between 717 and 510 Ma. Zircon (U-Th)/He dates for basement below the Great Unconformity are 975 to 46 Ma and are consistent with exhumation by 717 Ma. Our results provide evidence that most erosion below the Great Unconformity in Colorado occurred before the first Neoproterozoic Snowball Earth and therefore cannot be a product of glacial erosion. We propose that multiple Great Unconformities developed diachronously and represent regional tectonic features rather than a synchronous global phenomenon.

3.
Sci Adv ; 8(47): eadc9430, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36417531

RESUMO

During the Cryogenian (720 to 635 Ma ago) Snowball Earth glaciations, ice extended to sea level near the equator. The cause of this catastrophic failure of Earth's thermostat has been unclear, but previous geochronology has suggested a rough coincidence of glacial onset with one of the largest magmatic episodes in the geological record, the Franklin large igneous province. U-Pb geochronology on zircon and baddeleyite from sills associated with the paleo-equatorial Franklin large igneous province in Arctic Canada record rapid emplacement between 719.86 ± 0.21 and 718.61 ± 0.30 Ma ago, 0.9 to 1.6 Ma before the onset of widespread glaciation. Geologic observations and (U-Th)/He dates on Franklin sills are compatible with major post-Franklin exhumation, possibly due to development of mafic volcanic highlands on windward equatorial Laurentia and increased global weatherability. After a transient magmatic CO2 flux, long-term carbon sequestration associated with increased weatherability could have nudged Earth over the threshold for runaway ice-albedo feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA