Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
BMC Plant Biol ; 23(1): 369, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488482

RESUMO

BACKGROUND: In plant water relations research, predawn leaf water potential (Ψpd) is often used as a proxy for soil water potential (Ψsoil), without testing the underlying assumptions that nighttime transpiration is negligible and that enough time has passed for a hydrostatic equilibrium to be established. The goal of this research was to test the assumption Ψpd = Ψsoil for field-grown grapevines. RESULTS: A field trial was conducted with 30 different cultivars of wine grapes grown in a single vineyard in arid southeastern Washington, USA, for two years. The Ψpd and the volumetric soil water content (θv) under each sampled plant were measured multiple times during several dry-down cycles. The results show that in wet soil (Ψsoil > - 0.14 MPa or relative extractable water content, θe > 0.36), Ψpd was significantly lower than Ψsoil for all 30 cultivars. Under dry soil conditions (Ψsoil < - 0.14 MPa or θe < 0.36) Ψpd lined up better with Ψsoil. There were differences between cultivars, but these were not consistent over the years. CONCLUSION: These results suggest that for wet soils Ψpd of grapevines cannot be used as a proxy for Ψsoil, while the Ψpd = Ψsoil assumption may hold for dry soils.


Assuntos
Solo , Água , Folhas de Planta , Fazendas , Transpiração Vegetal
2.
Environ Sci Technol ; 57(13): 5296-5304, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951544

RESUMO

Agricultural soils are a major reservoir of microplastics, and concerns have arisen about the impacts of microplastics on soil properties and functioning. Here, we measured the physical properties of a silt loam in response to the incorporation of polyester fibers and polypropylene granules over a wide range of concentrations. We further elucidated the underlying mechanisms by determining the role of microplastic shape and the baseline effects from the amendment of soil particles. The incorporation of microplastics into soil tended to increase contact angle and saturated hydraulic conductivity and decrease bulk density and water holding capacity, but not affect aggregate stability. Polyester fibers affected soil physical properties more profoundly than polypropylene granules, due to the vastly different shape of fibers from that of soil particles. However, changes in soil properties were gradual, and significant changes did not occur until a high concentration of microplastics was reached (i.e., 0.5% w/w for polyester fibers and 2% w/w for polypropylene granules). Currently, microplastic concentrations in soils not heavily polluted with plastics are far below these concentrations, and results from this study suggest that microplastics at environmentally relevant concentrations have no significant effects on soil physical properties.


Assuntos
Microplásticos , Solo , Plásticos , Polipropilenos , Poliésteres
3.
Environ Sci Technol ; 57(4): 1837-1847, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36594827

RESUMO

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.


Assuntos
Carbono , Solo , Solo/química , Sequestro de Carbono , Carvão Vegetal
4.
Environ Sci Technol ; 56(4): 2398-2406, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119274

RESUMO

Biodegradable plastics can reach full degradation when disposed of appropriately and thus alleviate plastic pollution caused by conventional plastics. However, additives can be released into the environment during degradation and the fate of these additives can be affected by the degradation process. Here, we characterized TiO2 particles released from a biodegradable plastic mulch during composting and studied the transport of the mulch-released TiO2 particles in inert sand and agricultural soil columns under unsaturated flow conditions. TiO2 particles (238 nm major axis and 154 nm minor axis) were released from the biodegradable plastic mulch in both single-particle and cluster forms. The mulch-released TiO2 particles were fully retained in unsaturated soil columns due to attachment onto the solid-water interface and straining. However, in unsaturated sand columns, the mulch-released TiO2 particles were highly mobile. A comparison with the pristine TiO2 revealed that the mobility of the mulch-released TiO2 particles was enhanced by humic acid present in the compost residues, which blocked attachment sites and imposed steric repulsion. This study demonstrates that TiO2 particles can be released during composting of biodegradable plastics and the transport potential of the plastic-released TiO2 particles in the terrestrial environment can be enhanced by compost residues.


Assuntos
Plásticos Biodegradáveis , Compostagem , Plásticos , Areia , Solo , Titânio
5.
Proc Natl Acad Sci U S A ; 115(11): 2670-2675, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483268

RESUMO

Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Biodiversidade , Clima Desértico , Solo/química , América do Sul
6.
Langmuir ; 34(43): 12764-12775, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30296101

RESUMO

A thorough knowledge of the interaction energy between a hollow particle (HP) and a surface or between two HPs is critical to the optimization of HP-based products and assessing the environmental risks of HPs and HP-associated pollutants. The van der Waals (vdW) energy between a HP and a surface is often calculated by subtracting the vdW energies of the inner and outer HP geometries. In this study, we show that this subtraction method is only valid when the interior and exterior fluids are the same, for example, for water-filled HPs (WHPs) dispersed in an aqueous solution. Expressions were developed to calculate the vdW energies for HPs whose interiors were filled with air (AHPs). The vdW energies were then calculated between a planar surface and a spherical or cylindrical WHP and AHP, and between WHPs or AHPs. The vdW attraction between a surface and a WHP was decreased at large separation distances compared to solid particles, and this reduced the depth of the secondary minimum. In contrast, the vdW attraction for AHPs and a surface was significantly reduced at all separation distances, and even became repulsive for thin shells, and this inhibited both primary and secondary minimum interactions. The vdW attraction between WHPs decreased with increasing shell thicknesses, and this reduced aggregation in both primary and secondary minima. In contrast, aggregation of AHPs was increased in both minima with decreasing shell thicknesses because of an increase in vdW attraction. Our theoretical calculations show the evolution of vdW and total interaction energies for HPs with different interior fluids and shell thicknesses. These results help explain various experimental observations such as inhibited attachment and favorable aggregation for AHPs (e.g., carbon nanotubes) and favorable bubble coalescence.

8.
Environ Sci Technol ; 48(7): 3791-9, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24588072

RESUMO

Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.


Assuntos
Coloides/química , Movimentos da Água , Água/química , Modelos Teóricos , Nitratos/análise , Porosidade , Reologia
9.
Environ Sci Technol ; 48(13): 7272-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24897130

RESUMO

Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.


Assuntos
Coloides/química , Fenômenos Físicos , Ar , Interações Hidrofóbicas e Hidrofílicas , Microesferas , Porosidade , Suspensões , Água/química
10.
Environ Sci Technol ; 48(21): 12851-7, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25280127

RESUMO

Nuclear waste storage tanks at the Hanford site in southeastern Washington have released highly alkaline solutions, containing radioactive and other contaminants, into subsurface sediments. When this waste reacts with subsurface sediments, feldspathoid minerals (sodalite, cancrinite) can form, sequestering pertechnetate (99TcO4-) and other ions. This study investigates the potential for incorporation of perrhenate (ReO4-), a chemical surrogate for 99TcO4-, into mixed perrhenate/nitrate (ReO4-/NO3-) sodalite. Mixed-anion sodalites were hydrothermally synthesized in the laboratory from zeolite A in sodium hydroxide, nitrate, and perrhenate solutions at 90 °C for 24 h. The resulting solids were characterized by bulk chemical analysis, X-ray diffraction, scanning electron microscopy, and X-ray absorption near edge structure spectroscopy (XANES) to determine the products' chemical composition, structure, morphology, and Re oxidation state. The XANES data indicated that nearly all rhenium (Re) was incorporated as Re(VII)O4-. The nonlinear increase of the unit cell parameter with ReO4-/NO3- ratios suggests formation of two separate sodalite phases in lieu of a mixed-anion sodalite. The results reveal that the sodalite cage is highly selective toward NO3- over ReO4-. Calculated enthalpy and Gibbs free energy of formation at 298 K for NO3- and ReO4-sodalite suggest that NO3- incorporation into the cage is favored over the incorporation of the larger ReO4-, due to the smaller ionic radius of NO3-. Based on these results, it is expected that NO3-, which is present at significantly higher concentrations in alkaline waste solutions than 99TcO4-, will be strongly preferred for incorporation into the sodalite cage.


Assuntos
Minerais/química , Nitratos/química , Rênio/química , Ânions , Microscopia Eletrônica de Varredura , Minerais/análise , Resíduos Radioativos/análise , Soluções , Temperatura , Washington , Água/química , Espectroscopia por Absorção de Raios X , Difração de Raios X
11.
Environ Pollut ; 356: 124367, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876376

RESUMO

Biodegradable film mulching has attracted considerable attention as an alternative to conventional plastic film mulching. However, biodegradable films generate transitory microplastics during the film degradation. How much of this transitory microplastics is being formed and their impact on soil health during long-term use of biodegradable plastic film are not known. Here, we quantified the amounts of microplastics (0.1-5 mm in size) in the topsoil (0-20 cm) of two cotton fields with different mulching cultivations: (1) continuous use of conventional (polyethylene, PE) film for 23 years (Plot 1), and (2) 15 years use of conventional film followed by 8 years of biodegradable (polybutylene adipate-co-terephthalate, PBAT) film (Plot 2). We further assessed the impacts of the microplastics on selected soil health parameters, with a focus on soil carbon contents and fluxes. The total amount of microplastics was larger in Plot 2 (8507 particles kg-1) than in Plot 1 (6767 particles kg-1). The microplastics (0.1-1 mm) were identified as derived from PBAT and PE in Plot 2; while in Plot 1, the microplastics were identified as PE. Microplastics > 1 mm were exclusively identified as PE in both plots. Soil organic carbon was higher (27 vs. 30 g C kg-1 soil) but dissolved organic carbon (120 vs. 74 mg C kg-1 soil) and microbial biomass carbon were lower (413 vs. 246 mg C kg-1 soil) in Plot 2 compared to the Plot 1. Based on 13C natural abundance, we found that in Plot 2, carbon flow was dominated from micro- (<0.25 mm) to macroaggregates (0.25-2 and >2 mm), whereas in Plot 1, carbon flow occurred between large and small macroaggregates, and from micro-to macroaggregates. Thus, long-term application of biodegradable film changed the abundance of microplastics, and organic carbon accumulation compared to conventional polyethylene film mulching.

12.
Sci Total Environ ; 912: 168883, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040367

RESUMO

Land-applied biosolids can be a considerable source of microplastics in soils. Previous studies reported microplastics accumulation in soils from biosolid application, however, little is known about the contribution of atmospherically deposited microplastics to agricultural soils. In this study, we quantified and characterized microplastics in soils that have been amended with biosolids over the past 23 years. We also collected atmospheric deposition samples to determine the amount and type of plastics added to soils through atmospheric input over a period of about 2 years. Soil samples were taken from a replicated field trial where biosolids have been applied at rates of 0, 4.8, 6.9, and 9.0 t/ha every second crop. The biosolids were anaerobically digested and dewatered, and were applied by spreading onto the soil surface. Soil and atmospheric samples were extracted for microplastics by Fenton's reaction to remove organic matter followed by flotation in a zinc chloride solution to separate plastic from soil particles. Samples were analyzed for microplastics by optical microscopy and Laser Direct Infrared Imaging Analysis (LDIR). The mean number of microplastics identified from biosolids samples was 12,000 particles/kg dry biosolids. The long-term applications of biosolids to the soil led to mean plastics concentrations of 383, 500, and 361 particles/kg dry soil in the 0-10 cm depth for low, medium, and high biosolids application rates, respectively. These plastic concentrations were not significantly different from each other, but significantly higher than those found in non biosolids-amended soil (117 particles/kg dry soil). The dominant plastic types by number found in biosolids were polyurethane, followed by polyethylene, and polyamide. The most abundant plastics in soil samples were polyurethane, polyethylene terephthalate, polyamide, and polyethylene. Atmospheric deposition contributed to 15 particles/kg dry soil per year and was mainly composed of polyamide fibers. This study shows that long-term application of biosolids led to an accumulation of microplastics in soil, but that atmospheric deposition also contributes a considerable input of microplastics.


Assuntos
Poluentes do Solo , Solo , Microplásticos , Plásticos , Biossólidos , Poliuretanos , Nylons , Poluentes do Solo/análise , Polietilenos , Esgotos
13.
Langmuir ; 29(25): 7903-11, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23721116

RESUMO

The capillary forces exerted by moving air-water interfaces can dislodge particles from stationary surfaces. The magnitude of the capillary forces depends on particle shape, orientation, and surface properties, such as contact angle and roughness. The objective was to quantify, both experimentally and theoretically, capillary force variations as an air-water interface moves over the particles. We measured capillary forces as a function of position, i.e., force-position curves, on particles of different shape by using force tensiometry. The particles (5 mm nominal size) were made of polyacrylate and were fabricated using a 3D printer. Experimental measurements were compared with theoretical calculations. We found that force-position curves could be classified into in three categories according to particle shapes: (1) curves for particles with round cross sections, such as spheroidal particles, (2) curves for particles with fixed cross sections, such cylindrical or cubical particles, and (3) curves for particles with tapering cross sections, such as prismatic or tetrahedral particles. Spheroidal particles showed a continuously varying capillary force. Cylindrical or cubical particles showed pronounced pinning of the air-water interface line at edges. The pinning led to an increased capillary force, which was relaxed when the interface snapped off from the edges. Particles with tapering cross section did not show pinning and showed reduced capillary forces as the air-water interface line perimeter and displacement cross section continuously decrease when the air-water interface moved over the particles.


Assuntos
Ar , Água/química , Propriedades de Superfície , Tensoativos/química
14.
Langmuir ; 29(19): 5770-80, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23586925

RESUMO

Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.


Assuntos
Ar , Poliestirenos/química , Álcool de Polivinil/química , Água/química , Coloides/química , Microesferas , Tamanho da Partícula , Propriedades de Superfície
15.
Environ Sci Technol ; 47(5): 2153-60, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23373984

RESUMO

The objective of this study was to quantify transport of Eu colloids in the vadose zone at the semiarid Hanford site. Eu-hydroxy-carbonate colloids, Eu(OH)(CO3), were applied to the surface of field lysimeters, and migration of the colloids through the sediments was monitored using wick samplers. The lysimeters were exposed to natural precipitation (145-231 mm/year) or artificial irrigation (124-348 mm/year). Wick outflow was analyzed for Eu concentrations, supplemented by electron microscopy and energy-dispersive X-ray analysis. Small amounts of Eu colloids (<1%) were detected in the deepest wick sampler (2.14 m depth) 2.5 months after application and cumulative precipitation of only 20 mm. We observed rapid transport of Eu colloids under both natural precipitation and artificial irrigation; that is, the leading edge of the Eu colloids moved at a velocity of 3 cm/day within the first 2 months after application. Episodic infiltration (e.g., Chinook snowmelt events) caused peaks of Eu in the wick outflow. While a fraction of Eu moved consistent with long-term recharge estimates at the site, the main mass of Eu remained in the top 30 cm of the sediments. This study illustrates that, under field conditions, near-surface colloid mobilization and transport occurred in Hanford sediments.


Assuntos
Monitoramento Ambiental , Európio/química , Sedimentos Geológicos/análise , Coloides/química , Sedimentos Geológicos/química , Chuva , Washington , Movimentos da Água , Poluentes Químicos da Água/química
16.
Sci Total Environ ; 894: 164674, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301399

RESUMO

Conventional plastic mulch brings agronomic and economic benefits to crop production, but a large amount of plastic waste amasses when the mulch is removed from the fields after harvest. Soil-biodegradable plastic mulch (BDM) has emerged as a promising alternative to conventional plastic mulch as it can be tilled into the soil after harvest, thereby alleviating disposal problems. However, direct evidence on complete degradation of biodegradable mulch under natural conditions is still lacking. We quantified the dynamics of macro- (>5 mm) and microplastics (0.1-5 mm in size) in four years after a one-time application of mulch in a field with monoculture maize. The BDM feedstock was polybutyleneadipate-co-terephthalate (PBAT) and polylactic acid (PLA)-based, and both a clear and black BDM were tested. The BDM plastic mulch films degraded into macro- and micoplastics. Macroplastics disappeared 2.5 years after mulch incorporation. We developed a new extraction method for biodegradable microplastics using a sequential density fractionation approach with a H2O and a ZnCl2 solution. Microplastic concentrations in the soil ranged from 350 to 525 particles/kg after 2.5 years, 175 to 250 particles/kg after 3 years, and 50 to 125 particles/kg after 3.5 year following mulch incorporation. This continuous decrease of detectable plastic particle concentrations in soil suggests that BDMs fragment degrade into smaller and smaller particles, which eventually may biodegrade completely. While we cannot ascertain whether persistent and undetectable nanoplastics may form, macro- and microplastics formed from BDM seem to disappear with time.


Assuntos
Plásticos Biodegradáveis , Microplásticos , Plásticos , Solo , Agricultura , Filmes Cinematográficos
17.
Water Res ; 239: 120018, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201372

RESUMO

Plastic pollution caused by conventional plastics has promoted the development and use of biodegradable plastics. However, biodegradable plastics do not degrade readily in water; instead, they can generate micro- and nanoplastics. Compared to microplastics, nanoplastics are more likely to cause negative impacts to the aquatic environment due to their smaller size. The impacts of biodegradable nanoplastics highly depend on their aggregation behavior and colloidal stability, which still remain unknown. Here, we studied the aggregation kinetics of biodegradable nanoplastics made of polybutylene adipate co-terephthalate (PBAT) in NaCl and CaCl2 solutions as well as in natural waters before and after weathering. We further studied the effect of proteins on aggregation kinetics with both negative-charged bovine serum albumin (BSA) and positive-charged lysozyme (LSZ). For pristine PBAT nanoplastics (before weathering), Ca2+ destabilized nanoplastic suspensions more aggressively than Na+, with the critical coagulation concentration being 20 mM in CaCl2 vs 325 mM in NaCl. Both BSA and LSZ promoted the aggregation of pristine PBAT nanoplastics, and LSZ showed a more pronounced effect. However, no aggregation was observed for weathered PBAT nanoplastics under most experimental conditions. Further stability tests demonstrated that pristine PBAT nanoplastics aggregated substantially in seawater, but not in freshwater, and only slightly in soil pore water; while weathered PBAT nanoplastics remained stable in all natural waters. These results suggest that biodegradable nanoplastics, especially weathered biodegradable nanoplastics, are highly stable in the aquatic environment, even in the marine environment.


Assuntos
Plásticos Biodegradáveis , Plásticos , Microplásticos , Cloreto de Sódio , Cloreto de Cálcio , Soroalbumina Bovina , Água
18.
NanoImpact ; 31: 100474, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37419450

RESUMO

Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.

19.
20.
Environ Sci Technol ; 46(8): 4411-8, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22423648

RESUMO

In the vadose zone, air-water interfaces play an important role in particle fate and transport, as particles can attach to the air-water interfaces by action of capillary forces. This attachment can either retard or enhance the movement of particles, depending on whether the air-water interfaces are stationary or mobile. Here we use three standard PTFE particles (sphere, circular cylinder, and tent) and seven natural mineral particles (basalt, granite, hematite, magnetite, mica, milky quartz, and clear quartz) to quantify the capillary forces between an air-water interface and the different particles. Capillary forces were determined experimentally using tensiometry, and theoretically assuming volume-equivalent spherical, ellipsoidal, and circular cylinder shapes. We experimentally distinguished between the maximum capillary force and the snap-off force when the air-water interface detaches from the particle. Theoretical and experimental values of capillary forces were of similar order of magnitude. The sphere gave the smallest theoretical capillary force, and the circular cylinder had the largest force due to pinning of the air-water interface. Pinning was less pronounced for natural particles when compared to the circular cylinder. Ellipsoids gave the best agreement with measured forces, suggesting that this shape can provide a reasonable estimation of capillary forces for many natural particles.


Assuntos
Sedimentos Geológicos/química , Minerais/química , Água/química , Ar , Ação Capilar , Modelos Químicos , Politetrafluoretileno/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA