Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Cell ; 185(25): 4682-4702, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493751

RESUMO

Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Comunicação Celular , Tuberculose/imunologia
2.
Nat Immunol ; 22(12): 1515-1523, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811542

RESUMO

Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.


Assuntos
Anticorpos Antibacterianos/sangue , Vacina BCG/administração & dosagem , Imunogenicidade da Vacina , Imunoglobulina M/sangue , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Vacinação , Administração Intravenosa , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Macaca mulatta , Mycobacterium tuberculosis/patogenicidade , Fatores de Tempo , Tuberculose/imunologia , Tuberculose/microbiologia
3.
Immunity ; 57(10): 2380-2398.e6, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39214090

RESUMO

Immunological priming-in the context of either prior infection or vaccination-elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrated that prior Mtb infection elicited a long-lasting protective response against subsequent Mtb exposure and was CD4+ T cell dependent. By analyzing data from primary infection, reinfection, and reinfection-CD4+ T cell-depleted granulomas, we found that the presence of CD4+ T cells during reinfection resulted in a less inflammatory lung milieu characterized by reprogrammed CD8+ T cells, reduced neutrophilia, and blunted type 1 immune signaling among myeloid cells. These results open avenues for developing vaccines and therapeutics that not only target lymphocytes but also modulate innate immune cells to limit tuberculosis (TB) disease.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Granuloma , Imunomodulação , Mycobacterium tuberculosis , Reinfecção , Animais , Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Reinfecção/imunologia , Granuloma/imunologia , Granuloma/microbiologia , Linfócitos T CD8-Positivos/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Humanos , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
4.
Immunity ; 55(5): 827-846.e10, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483355

RESUMO

Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB.


Assuntos
Mycobacterium tuberculosis , Fibrose Pulmonar , Tuberculose , Animais , Ecossistema , Granuloma , Pulmão , Macaca fascicularis , Fibrose Pulmonar/patologia
5.
J Immunol ; 213(9): 1358-1370, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39311665

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the leading causes of death due to an infectious agent. Coinfection with HIV exacerbates M. tuberculosis infection outcomes in people living with HIV. Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, is effective in infants, but its efficacy in adolescents and adults is limited. In this study, we investigated the immune responses elicited by BCG administered via i.v. or intradermal (i.d.) routes in SIV-infected Mauritian cynomolgus macaques (MCM) without the confounding effects of M. tuberculosis challenge. We assessed the impact of vaccination on T cell responses in the airway, blood, and tissues (lung, thoracic lymph nodes, and spleen), as well as the expression of cytokines, cytotoxic effectors, and key transcription factors. Our results showed that i.v. BCG induces a robust and sustained immune response, including tissue-resident memory T cells in lungs, polyfunctional CD4+ and CD8αß+ T cells expressing multiple cytokines, and CD8αß+ T cells and NK cells expressing cytotoxic effectors in airways. We also detected higher levels of mycobacteria-specific IgG and IgM in the airways of i.v. BCG-vaccinated MCM. Although i.v. BCG vaccination resulted in an influx of tissue-resident memory T cells in lungs of MCM with controlled SIV replication, MCM with high plasma SIV RNA (>105 copies/ml) typically displayed reduced T cell responses, suggesting that uncontrolled SIV or HIV replication would have a detrimental effect on i.v. BCG-induced protection against M. tuberculosis.


Assuntos
Vacina BCG , Pulmão , Macaca fascicularis , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Pulmão/imunologia , Injeções Intradérmicas , Coinfecção/imunologia , Mycobacterium bovis/imunologia , Citocinas/imunologia , Tuberculose/imunologia , Vacinação
6.
Nature ; 577(7788): 95-102, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31894150

RESUMO

Mycobacterium tuberculosis (Mtb) is the leading cause of death from infection worldwide1. The only available vaccine, BCG (Bacillus Calmette-Guérin), is given intradermally and has variable efficacy against pulmonary tuberculosis, the major cause of mortality and disease transmission1,2. Here we show that intravenous administration of BCG profoundly alters the protective outcome of Mtb challenge in non-human primates (Macaca mulatta). Compared with intradermal or aerosol delivery, intravenous immunization induced substantially more antigen-responsive CD4 and CD8 T cell responses in blood, spleen, bronchoalveolar lavage and lung lymph nodes. Moreover, intravenous immunization induced a high frequency of antigen-responsive T cells across all lung parenchymal tissues. Six months after BCG vaccination, macaques were challenged with virulent Mtb. Notably, nine out of ten macaques that received intravenous BCG vaccination were highly protected, with six macaques showing no detectable levels of infection, as determined by positron emission tomography-computed tomography imaging, mycobacterial growth, pathology and granuloma formation. The finding that intravenous BCG prevents or substantially limits Mtb infection in highly susceptible rhesus macaques has important implications for vaccine delivery and clinical development, and provides a model for defining immune correlates and mechanisms of vaccine-elicited protection against tuberculosis.


Assuntos
Administração Intravenosa , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Tuberculose/prevenção & controle , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Macaca mulatta , Tuberculose/imunologia , Vacinação/normas
7.
J Virol ; 98(5): e0176223, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563762

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vírus do Sarampo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Chlorocebus aethiops , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Vírus do Sarampo/imunologia , Vírus do Sarampo/genética , Vacinas contra COVID-19/imunologia , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vetores Genéticos , Células Vero , Pandemias/prevenção & controle , Feminino , Betacoronavirus/imunologia , Betacoronavirus/genética , Pneumonia Viral/prevenção & controle , Pneumonia Viral/virologia , Pneumonia Viral/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Modelos Animais de Doenças
8.
Infect Immun ; 92(4): e0053523, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38514467

RESUMO

Concomitant immunity is generally defined as an ongoing infection providing protection against reinfection . Its role in prevention of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is supported by epidemiological evidence in humans as well as experimental evidence in mice and non-human primates (NHPs). Whether the presence of live Mtb, rather than simply persistent antigen, is necessary for concomitant immunity in TB is still unclear. Here, we investigated whether live Mtb plays a measurable role in control of secondary Mtb infection. Using cynomolgus macaques, molecularly barcoded Mtb libraries, positron emission tomography-computed tomography (PET CT) imaging, flow cytometry, and cytokine profiling, we evaluated the effect of antibiotic treatment after primary infection on immunological response and bacterial establishment, dissemination, and burden post-secondary infection. Our data provide evidence that, in this experimental model, treatment with antibiotics after primary infection reduced inflammation in the lung but was not associated with a significant change in bacterial establishment, dissemination, or burden in the lung or lymph nodes. Nonetheless, treatment of the prior infection with antibiotics did result in a modest reduction in protection against reinfection: none of the seven antibiotic-treated animals demonstrated sterilizing immunity against reinfection, while four of the seven non-treated macaques were completely protected against reinfection. These findings support that antibiotic-treated animals were still able to restrict bacterial establishment and dissemination after rechallenge compared to naïve macaques, but not to the full extent of non-antibiotic-treated macaques.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Camundongos , Reinfecção , Tuberculose/tratamento farmacológico , Macaca fascicularis , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
9.
PLoS Comput Biol ; 19(6): e1010823, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319311

RESUMO

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Antituberculosos , Moxifloxacina/uso terapêutico , Tuberculose/tratamento farmacológico
10.
J Infect Dis ; 227(4): 592-601, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36611221

RESUMO

Mycobacterium tuberculosis infection outcomes have been described as active tuberculosis or latent infection but a spectrum of outcomes is now recognized. We used a nonhuman primate model, which recapitulates human infection, to characterize the clinical, microbiologic, and radiographic patterns associated with developing latent M. tuberculosis infection. Four patterns were identified. "Controllers" had normal erythrocyte sedimentation rate (ESR) without M. tuberculosis growth in bronchoalveolar lavage or gastric aspirate (BAL/GA). "Early subclinicals" showed transient ESR elevation and/or M. tuberculosis growth on BAL/GA for 60 days postinfection, "mid subclinicals" were positive for 90 days, and "late subclinicals" were positive intermittently, despite the absence of clinical disease. Variability was noted regarding granuloma formation, lung/lymph node metabolic activity, lung/lymph node bacterial burden, gross pathology, and extrapulmonary disease. Like human M. tuberculosis infection, this highlights the heterogeneity associated with the establishment of latent infection, underscoring the need to understand the clinical spectrum and risk factors associated with severe disease.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Animais , Humanos , Tuberculose Latente/diagnóstico por imagem , Tuberculose Latente/microbiologia , Pulmão/patologia , Macaca
11.
BMC Genomics ; 23(1): 647, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096729

RESUMO

BACKGROUND: Cynomolgus macaque (Macaca fascicularis) is an attractive animal model for the study of human disease and is extensively used in biomedical research. Cynomolgus macaques share behavioral, physiological, and genomic traits with humans and recapitulate human disease manifestations not observed in other animal species. To improve the use of the cynomolgus macaque model to investigate immune responses, we defined and characterized the T cell receptor (TCR) repertoire. RESULT: We identified and analyzed the alpha (TRA), beta (TRB), gamma (TRG), and delta (TRD) TCR loci of the cynomolgus macaque. The expressed repertoire was determined using 22 unique lung samples from Mycobacterium tuberculosis infected cynomolgus macaques by single cell RNA sequencing. Expressed TCR alpha (TRAV) and beta (TRBV) variable region genes were enriched and identified using gene specific primers, which allowed their functional status to be determined. Analysis of the primers used for cynomolgus macaque TCR variable region gene enrichment showed they could also be used to amplify rhesus macaque (M. mulatta) variable region genes. CONCLUSION: The genomic organization of the cynomolgus macaque has great similarity with the rhesus macaque and they shared > 90% sequence similarity with the human TCR repertoire. The identification of the TCR repertoire facilitates analysis of T cell immunity in cynomolgus macaques.


Assuntos
Genoma , Mycobacterium tuberculosis , Animais , Genômica , Humanos , Macaca fascicularis/genética , Macaca mulatta/genética , Mycobacterium tuberculosis/genética
12.
PLoS Pathog ; 16(8): e1008632, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32790739

RESUMO

Lymph nodes, particularly thoracic lymph nodes, are among the most common sites of extrapulmonary tuberculosis (TB). However, Mycobacterium tuberculosis (Mtb) infection in these organs is understudied. Aside from being sites of initiation of the adaptive immune system, lymph nodes also serve as niches of Mtb growth and persistence. Mtb infection results in granuloma formation that disrupts and-if it becomes large enough-replaces the normal architecture of the lymph node that is vital to its function. In preclinical models, successful TB vaccines appear to prevent spread of Mtb from the lungs to the lymph nodes. Reactivation of latent TB can start in the lymph nodes resulting in dissemination of the bacteria to the lungs and other organs. Involvement of the lymph nodes may improve Bacille Calmette-Guerin (BCG) vaccine efficacy. Lastly, drug penetration to the lymph nodes is poor compared to blood, lung tissue, and lung granulomas. Future studies on evaluating the efficacy of vaccines and anti-TB drug treatments should include consideration of the effects on thoracic lymph nodes and not just the lungs.


Assuntos
Pulmão/imunologia , Linfonodos/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/imunologia , Tuberculose/patologia , Animais , Humanos , Pulmão/microbiologia , Linfonodos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Tuberculose/prevenção & controle
13.
PLoS Pathog ; 16(7): e1008413, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32730321

RESUMO

Human immunodeficiency virus infection is the most common risk factor for severe forms of tuberculosis (TB), regardless of CD4 T cell count. Using a well-characterized cynomolgus macaque model of human TB, we compared radiographic, immunologic and microbiologic characteristics of early (subclinical) reactivation of latent M. tuberculosis (Mtb) infection among animals subsequently infected with simian immunodeficiency virus (SIV) or who underwent anti-CD4 depletion by a depletion antibody. CD4 depleted animals had significantly fewer CD4 T cells within granulomas compared to Mtb/SIV co-infected and Mtb-only control animals. After 2 months of treatment, subclinical reactivation occurred at similar rates among CD4 depleted (5 of 7 animals) and SIV infected animals (4 of 8 animals). However, SIV-induced reactivation was associated with more dissemination of lung granulomas that were permissive to Mtb growth resulting in greater bacterial burden within granulomas compared to CD4 depleted reactivators. Granulomas from Mtb/SIV animals displayed a more robust T cell activation profile (IFN-α, IFN-γ, TNF, IL-17, IL-2, IL-10, IL-4 and granzyme B) compared to CD4 depleted animals and controls though these effectors did not protect against reactivation or dissemination, but instead may be related to increased viral and/or Mtb antigens. SIV replication within the granuloma was associated with reactivation, greater overall Mtb growth and reduced Mtb killing resulting in greater overall Mtb burden. These data support that SIV disrupts protective immune responses against latent Mtb infection beyond the loss of CD4 T cells, and that synergy between SIV and Mtb occurs within granulomas.


Assuntos
Coinfecção/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Ativação Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Granuloma/virologia , Hospedeiro Imunocomprometido/imunologia , Macaca fascicularis , Mycobacterium tuberculosis/imunologia , Vírus da Imunodeficiência Símia/imunologia
14.
PLoS Pathog ; 16(9): e1008903, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946524

RESUMO

Vaccines are urgently needed to combat the global coronavirus disease 2019 (COVID-19) pandemic, and testing of candidate vaccines in an appropriate non-human primate (NHP) model is a critical step in the process. Infection of African green monkeys (AGM) with a low passage human isolate of SARS-CoV-2 by aerosol or mucosal exposure resulted in mild clinical infection with a transient decrease in lung tidal volume. Imaging with human clinical-grade 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) co-registered with computed tomography (CT) revealed pulmonary lesions at 4 days post-infection (dpi) that resolved over time. Infectious virus was shed from both respiratory and gastrointestinal (GI) tracts in all animals in a biphasic manner, first between 2-7 dpi followed by a recrudescence at 14-21 dpi. Viral RNA (vRNA) was found throughout both respiratory and gastrointestinal systems at necropsy with higher levels of vRNA found within the GI tract tissues. All animals seroconverted simultaneously for IgM and IgG, which has also been documented in human COVID-19 cases. Young AGM represent an species to study mild/subclinical COVID-19 disease and with possible insights into live virus shedding. Future vaccine evaluation can be performed in AGM with correlates of efficacy being lung lesions by PET/CT, virus shedding, and tissue viral load.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico por imagem , Trato Gastrointestinal/virologia , Pneumonia Viral/diagnóstico por imagem , Eliminação de Partículas Virais/fisiologia , Animais , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Pulmão/patologia , Pulmão/virologia , Pandemias , Pneumonia Viral/virologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , SARS-CoV-2
15.
J Immunol ; 204(3): 644-659, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862711

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to be a major global health problem. Lung granulomas are organized structures of host immune cells that function to contain the bacteria. Cytokine expression is a critical component of the protective immune response, but inappropriate cytokine expression can exacerbate TB. Although the importance of proinflammatory cytokines in controlling M. tuberculosis infection has been established, the effects of anti-inflammatory cytokines, such as IL-10, in TB are less well understood. To investigate the role of IL-10, we used an Ab to neutralize IL-10 in cynomolgus macaques during M. tuberculosis infection. Anti-IL-10-treated nonhuman primates had similar overall disease outcomes compared with untreated control nonhuman primates, but there were immunological changes in granulomas and lymph nodes from anti-IL-10-treated animals. There was less thoracic inflammation and increased cytokine production in lung granulomas and lymph nodes from IL-10-neutralized animals at 3-4 wk postinfection compared with control animals. At 8 wk postinfection, lung granulomas from IL-10-neutralized animals had reduced cytokine production but increased fibrosis relative to control animals. Although these immunological changes did not affect the overall disease burden during the first 8 wk of infection, we paired computational modeling to explore late infection dynamics. Our findings support that early changes occurring in the absence of IL-10 may lead to better bacterial control later during infection. These unique datasets provide insight into the contribution of IL-10 to the immunological balance necessary for granulomas to control bacterial burden and disease pathology in M. tuberculosis infection.


Assuntos
Granuloma/imunologia , Inflamação/imunologia , Interleucina-10/metabolismo , Pulmão/patologia , Linfonodos/imunologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunidade , Pulmão/imunologia , Macaca fascicularis , Fibrose Pulmonar
16.
PLoS Comput Biol ; 16(5): e1007280, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433646

RESUMO

Mycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb infection, are complex structures that form in lungs, composed of immune cells surrounding bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically contain and immunologically restrain bacteria growth, some granulomas are unable to control Mtb growth, leading to bacteria and infected cells leaving the granuloma and disseminating, either resulting in additional granuloma formation (local or non-local) or spread to airways or lymph nodes. Dissemination is associated with development of active TB. It is challenging to experimentally address specific mechanisms driving dissemination from TB lung granulomas. Herein, we develop a novel hybrid multi-scale computational model, MultiGran, that tracks Mtb infection within multiple granulomas in an entire lung. MultiGran follows cells, cytokines, and bacterial populations within each lung granuloma throughout the course of infection and is calibrated to multiple non-human primate (NHP) cellular, granuloma, and whole-lung datasets. We show that MultiGran can recapitulate patterns of in vivo local and non-local dissemination, predict likelihood of dissemination, and predict a crucial role for multifunctional CD8+ T cells and macrophage dynamics for preventing dissemination.


Assuntos
Biologia Computacional/métodos , Previsões/métodos , Tuberculose/patologia , Animais , Linfócitos T CD8-Positivos/imunologia , Simulação por Computador , Citocinas/imunologia , Granuloma/microbiologia , Granuloma do Sistema Respiratório/microbiologia , Granuloma do Sistema Respiratório/fisiopatologia , Humanos , Pulmão/microbiologia , Linfonodos/patologia , Macrófagos/imunologia , Modelos Teóricos , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/microbiologia
17.
PLoS Pathog ; 14(11): e1007337, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383808

RESUMO

Tuberculosis is commonly considered a chronic lung disease, however, extrapulmonary infection can occur in any organ. Even though lymph nodes (LN) are among the most common sites of extrapulmonary Mycobacterium tuberculosis (Mtb) infection, and thoracic LNs are frequently infected in humans, bacterial dynamics and the effect of Mtb infection in LN structure and function is relatively unstudied. We surveyed thoracic LNs from Mtb-infected cynomolgus and rhesus macaques analyzing PET CT scans, bacterial burden, LN structure and immune function. FDG avidity correlated with the presence of live bacteria in LNs at necropsy. Lymph nodes have different trajectories (increasing, maintaining, decreasing in PET activity over time) even within the same animal. Rhesus macaques are more susceptible to Mtb infection than cynomolgus macaques and this is in part due to more extensive LN pathology. Here, we show that Mtb grows to the same level in cynomolgus and rhesus macaque LNs, however, cynomolgus macaques control Mtb at later time points post-infection while rhesus macaques do not. Notably, compared to lung granulomas, LNs are generally poor at killing Mtb, even with drug treatment. Granulomas that form in LNs lack B cell-rich tertiary lymphoid structures, disrupt LN structure by pushing out T cells and B cells, introduce large numbers of macrophages that can serve as niches for Mtb, and destroy normal vasculature. Our data support that LNs are not only sites of antigen presentation and immune activation during infection, but also serve as important sites for persistence of significant numbers of Mtb bacilli.


Assuntos
Linfonodos/imunologia , Macaca/imunologia , Tuberculose/imunologia , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/patologia , Granuloma/patologia , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Linfonodos/microbiologia , Macaca/microbiologia , Mycobacterium tuberculosis/patogenicidade , Tomografia por Emissão de Pósitrons
18.
PLoS Pathog ; 14(10): e1007305, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30312351

RESUMO

For many pathogens, including most targets of effective vaccines, infection elicits an immune response that confers significant protection against reinfection. There has been significant debate as to whether natural Mycobacterium tuberculosis (Mtb) infection confers protection against reinfection. Here we experimentally assessed the protection conferred by concurrent Mtb infection in macaques, a robust experimental model of human tuberculosis (TB), using a combination of serial imaging and Mtb challenge strains differentiated by DNA identifiers. Strikingly, ongoing Mtb infection provided complete protection against establishment of secondary infection in over half of the macaques and allowed near sterilizing bacterial control for those in which a secondary infection was established. By contrast, boosted BCG vaccination reduced granuloma inflammation but had no impact on early granuloma bacterial burden. These findings are evidence of highly effective concomitant mycobacterial immunity in the lung, which may inform TB vaccine design and development.


Assuntos
Coinfecção/imunologia , Mycobacterium tuberculosis/imunologia , Pneumonia/prevenção & controle , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/prevenção & controle , Animais , Macaca , Pneumonia/imunologia , Pneumonia/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Vacinação
19.
J Immunol ; 201(9): 2541-2548, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348659

RESUMO

Human Mycobacterium tuberculosis infection was thought to result in either active symptomatic tuberculosis (TB) or latent asymptomatic infection. It is now clear that this binary classification is insufficient to describe the myriad of infection outcomes. In active TB, symptomatic disease can be mild to severe, with a range of lung and thoracic lymph node involvement or extrapulmonary manifestations. Most humans control the infection and develop latent TB infection, with differential risks of reactivation to active TB. However, some frequently exposed persons appear to be resistant to infection, whereas others may initially become infected yet subsequently eliminate all bacilli. The immunologic factors influencing these varied outcomes are still not clear, but likely involve a range of different responses. In this article, we review the data supporting the spectrum of M. tuberculosis infection in humans as well as data in nonhuman primates that allow dissection of the immune responses leading to the varied outcomes of infection.


Assuntos
Resistência à Doença/imunologia , Granuloma do Sistema Respiratório/microbiologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Antígenos de Bactérias/imunologia , Granuloma do Sistema Respiratório/patologia , Humanos , Linfócitos T/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
20.
J Immunol ; 199(2): 806-815, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28592427

RESUMO

Positron emission tomography and computed tomography imaging (PET/CT) is an increasingly valuable tool for diagnosing tuberculosis (TB). The glucose analog [18F]fluoro-2-deoxy-2-d-glucose ([18F]-FDG) is commonly used in PET/CT that is retained by metabolically active inflammatory cells in granulomas, but lacks specificity for particular cell types. A PET probe that could identify recruitment and differentiation of different cell populations in granulomas would be a useful research tool and could improve TB diagnosis and treatment. We used the Mycobacterium-antigen murine inflammation model and macaques with TB to identify [64Cu]-labeled CB-TE1A1P-PEG4-LLP2A ([64Cu]-LLP2A), a high affinity peptidomimetic ligand for very late Ag-4 (VLA-4; also called integrin α4ß1) binding cells in granulomas, and compared [64Cu]-LLP2A with [18F]-FDG over the course of infection. We found that [64Cu]-LLP2A retention was driven by macrophages and T cells, with less contribution from neutrophils and B cells. In macaques, granulomas had higher [64Cu]-LLP2A uptake than uninfected tissues, and immunohistochemical analysis of granulomas with known [64Cu]-LLP2A uptake identified significant correlations between LLP2A signal and macrophage and T cell numbers. The same cells coexpressed integrin α4 and ß1, further supporting that macrophages and T cells drive [64Cu]-LLP2A avidity in granulomas. Over the course of infection, granulomas and thoracic lymph nodes experienced dynamic changes in affinity for both probes, suggesting metabolic changes and cell differentiation or recruitment occurs throughout granuloma development. These results indicate [64Cu]-LLP2A is a PET probe for VLA-4, which when used in conjunction with [18F]-FDG, may be a useful tool for understanding granuloma biology in TB.


Assuntos
Glucose/metabolismo , Granuloma/imunologia , Integrina alfa4beta1/genética , Tuberculose/diagnóstico por imagem , Tuberculose/imunologia , Animais , Diferenciação Celular , Movimento Celular , Granuloma/diagnóstico por imagem , Granuloma/metabolismo , Granuloma/fisiopatologia , Compostos Heterocíclicos com 2 Anéis/química , Integrina alfa4beta1/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Macaca , Macrófagos/imunologia , Neutrófilos/imunologia , Organofosfonatos/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Linfócitos T/imunologia , Tuberculose/diagnóstico , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA