Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 142(5): 749-61, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20727575

RESUMO

Repulsive signaling by Semaphorins and Plexins is crucial for the development and homeostasis of the nervous, immune, and cardiovascular systems. Sema7A acts as both an immune and a neural Semaphorin through PlexinC1, and A39R is a Sema7A mimic secreted by smallpox virus. We report the structures of Sema7A and A39R complexed with the Semaphorin-binding module of PlexinC1. Both structures show two PlexinC1 molecules symmetrically bridged by Semaphorin dimers, in which the Semaphorin and PlexinC1 beta propellers interact in an edge-on, orthogonal orientation. Both binding interfaces are dominated by the insertion of the Semaphorin's 4c-4d loop into a deep groove in blade 3 of the PlexinC1 propeller. A39R appears to achieve Sema7A mimicry by preserving key Plexin-binding determinants seen in the mammalian Sema7A complex that have evolved to achieve higher affinity binding to the host-derived PlexinC1. The complex structures support a conserved Semaphorin-Plexin recognition mode and suggest that Plexins are activated by dimerization.


Assuntos
Antígenos CD/química , Mimetismo Molecular , Receptores Virais/química , Semaforinas/química , Vaccinia virus/química , Proteínas Virais/química , Sequência de Aminoácidos , Antígenos CD/metabolismo , Cristalografia por Raios X , Proteínas Ligadas por GPI , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Receptores Virais/metabolismo , Semaforinas/metabolismo , Alinhamento de Sequência , Proteínas Virais/metabolismo
2.
J Struct Biol ; 212(3): 107656, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33132189

RESUMO

Dysfunction in mitochondrial dynamics is believed to contribute to a host of neurological disorders and has recently been implicated in cancer metastasis. The outer mitochondrial membrane adapter protein Miro functions in the regulation of mitochondrial mobility and degradation, however, the structural basis for its roles in mitochondrial regulation remain unknown. Here, we report a 1.7Å crystal structure of N-terminal GTPase domain (nGTPase) of human Miro1 bound unexpectedly to GTP, thereby revealing a non-catalytic configuration of the putative GTPase active site. We identify two conserved surfaces of the nGTPase, the "SELFYY" and "ITIP" motifs, that are potentially positioned to mediate dimerization or interaction with binding partners. Additionally, we report small angle X-ray scattering (SAXS) data obtained from the intact soluble HsMiro1 and its paralog HsMiro2. Taken together, the data allow modeling of a crescent-shaped assembly of the soluble domain of HsMiro1/2. PDB RSEFERENCE: Crystal structure of the human Miro1 N-terminal GTPase bound to GTP, 6D71.


Assuntos
GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Domínios Proteicos/fisiologia , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
3.
EMBO Rep ; 14(11): 968-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24071720

RESUMO

Miro is a highly conserved calcium-binding GTPase at the regulatory nexus of mitochondrial transport and autophagy. Here we present crystal structures comprising the tandem EF hand and carboxy terminal GTPase (cGTPase) domains of Drosophila Miro. The structures reveal two previously unidentified 'hidden' EF hands, each paired with a canonical EF hand. Each EF hand pair is bound to a helix that structurally mimics an EF hand ligand. A key nucleotide-sensing element and a Pink1 phosphorylation site both lie within an extensive EF hand-cGTPase interface. Our results indicate structural mechanisms for calcium, nucleotide and phosphorylation-dependent regulation of mitochondrial function by Miro.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Motivos EF Hand , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Soluções , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas ras/química
4.
Biochemistry ; 53(32): 5365-73, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25093676

RESUMO

Potassium channels allow for the passive movement of potassium ions across the cell membrane and are instrumental in controlling the membrane potential in all cell types. Quaternary ammonium (QA) compounds block potassium channels and have long been used to study the functional and structural properties of these channels. Here we describe the interaction between three symmetrical hydrophobic QAs and the prokaryotic potassium channel KcsA. The structures demonstrate the presence of a hydrophobic pocket between the inner helices of KcsA and provide insight into the binding site and blocking mechanism of hydrophobic QAs. The structures also reveal a structurally hidden pathway between the central cavity and the outside membrane environment reminiscent of the lateral fenestration observed in sodium channels that can be accessed through small conformational changes in the pore wall. We propose that the hydrophobic binding pocket stabilizes the alkyl chains of long-chain QA molecules and may play a key role in hydrophobic drug binding in general.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Compostos de Amônio Quaternário/química , Sítios de Ligação , Ativação do Canal Iônico , Modelos Moleculares , Ligação Proteica , Conformação Proteica
5.
Proc Natl Acad Sci U S A ; 107(25): 11307-12, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534510

RESUMO

Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are prototypic growth factors and receptor tyrosine kinases which have critical functions in development. We show that PDGFs share a conserved region in their prodomain sequences which can remain noncovalently associated with the mature cystine-knot growth factor domain after processing. The structure of the PDGF-A/propeptide complex reveals this conserved, hydrophobic association mode. We also present the structure of the complex between PDGF-B and the first three Ig domains of PDGFRbeta, showing that two PDGF-B protomers clamp PDGFRbeta at their dimerization seam. The PDGF-B:PDGFRbeta interface is predominantly hydrophobic, and PDGFRs and the PDGF propeptides occupy overlapping positions on mature PDGFs, rationalizing the need of propeptides by PDGFs to cover functionally important hydrophobic surfaces during secretion. A large-scale structural organization and rearrangement is observed for PDGF-B upon receptor binding, in which the PDGF-B L1 loop, disordered in the structure of the free form, adopts a highly specific conformation to form hydrophobic interactions with the third Ig domain of PDGFRbeta. Calorimetric data also shows that the membrane-proximal homotypic PDGFRalpha interaction, albeit required for activation, contributes negatively to ligand binding. The structural and biochemical data together offer insights into PDGF-PDGFR signaling, as well as strategies for PDGF-antagonism.


Assuntos
Fator de Crescimento Derivado de Plaquetas/química , Animais , Cristalografia por Raios X/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Peptídeos/química , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ligação Proteica , Conformação Proteica , Receptores Proteína Tirosina Quinases/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Proteínas Recombinantes/química , Transdução de Sinais , Termodinâmica
6.
J Biol Chem ; 286(1): 797-805, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21047790

RESUMO

The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular ß-sheet formed by the joining of two individual GFC ß-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular ß-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/genética , Linhagem Celular , Cristalografia por Raios X , Humanos , Imunoglobulinas/química , Modelos Moleculares , Mutagênese , Fatores de Crescimento Neural/genética , Neurônios/citologia , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
7.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 9): 1163-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22948917

RESUMO

The galectins are a family of proteins that bind with highest affinity to N-acetyllactosamine disaccharides, which are common constituents of asparagine-linked complex glycans. They play important and diverse physiological roles, particularly in the immune system, and are thought to be critical metastatic agents for many types of cancer cells, including gliomas. A recent bioactivity-based screen of marine sponge (Cinachyrella sp.) extract identified an ancestral member of the galectin family based on its unexpected ability to positively modulate mammalian ionotropic glutamate receptor function. To gain insight into the mechanistic basis of this activity, the 2.1 Å resolution X-ray structure of one member of the family, galectin CchG-1, is reported. While the protomer exhibited structural similarity to mammalian prototype galectin, CchG-1 adopts a novel tetrameric arrangement in which a rigid toroidal-shaped 'donut' is stabilized in part by the packing of pairs of vicinal disulfide bonds. Twofold symmetry between binding-site pairs provides a basis for a model for interaction with ionotropic glutamate receptors.


Assuntos
Galectinas/química , Poríferos/química , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Animais , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia Estrutural de Proteína
8.
Nat Commun ; 13(1): 7262, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433967

RESUMO

N-glycan-mediated activation of the thrombopoietin receptor (MPL) under pathological conditions has been implicated in myeloproliferative neoplasms induced by mutant calreticulin, which forms an endogenous receptor-agonist complex that traffics to the cell surface and constitutively activates the receptor. However, the molecular basis for this mechanism is elusive because oncogenic activation occurs only in the cell-intrinsic complex and is thus cannot be replicated with external agonists. Here, we describe the structure and function of a marine sponge-derived MPL agonist, thrombocorticin (ThC), a homodimerized lectin with calcium-dependent fucose-binding properties. In-depth characterization of lectin-induced activation showed that, similar to oncogenic activation, sugar chain-mediated activation persists due to limited receptor internalization. The strong synergy between ThC and thrombopoietin suggests that ThC catalyzes the formation of receptor dimers on the cell surface. Overall, the existence of sugar-mediated MPL activation, in which the mode of activation is different from the original ligand, suggests that receptor activation is unpredictably diverse in living organisms.


Assuntos
Poríferos , Receptores de Trombopoetina , Animais , Lectinas , Poríferos/metabolismo , Receptores de Trombopoetina/metabolismo , Açúcares , Trombopoetina
9.
Proc Natl Acad Sci U S A ; 105(47): 18267-72, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19017797

RESUMO

Macrophage colony stimulating factor (M-CSF), through binding to its receptor FMS, a class III receptor tyrosine kinase (RTK), regulates the development and function of mononuclear phagocytes, and plays important roles in innate immunity, cancer and inflammation. We report a 2.4 A crystal structure of M-CSF bound to the first 3 domains (D1-D3) of FMS. The ligand binding mode of FMS is surprisingly different from KIT, another class III RTK, in which the major ligand-binding domain of FMS, D2, uses the CD and EF loops, but not the beta-sheet on the opposite side of the Ig domain as in KIT, to bind ligand. Calorimetric data indicate that M-CSF cannot dimerize FMS without receptor-receptor interactions mediated by FMS domains D4 and D5. Consistently, the structure contains only 1 FMS-D1-D3 molecule bound to a M-CSF dimer, due to a weak, hydrophilic M-CSF:FMS interface, and probably a conformational change of the M-CSF dimer in which binding to the second site is rendered unfavorable by FMS binding at the first site. The partial, intermediate complex suggests that FMS may be activated in two steps, with the initial engagement step distinct from the subsequent dimerization/activation step. Hence, the formation of signaling class III RTK complexes can be diverse, engaging various modes of ligand recognition and various mechanistic steps for dimerizing and activating receptors.


Assuntos
Fator Estimulador de Colônias de Macrófagos/química , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Calorimetria , Cristalografia , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Modelos Moleculares , Conformação Proteica
10.
Biochemistry ; 49(7): 1486-94, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20092291

RESUMO

Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that (31)P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the (31)P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.


Assuntos
Proteínas de Bactérias/química , Fosfatos/química , Canais de Potássio/química , Água/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Deutério , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fosfatos/metabolismo , Canais de Potássio/metabolismo , Estrutura Secundária de Proteína , Marcadores de Spin , Streptomyces lividans/química , Streptomyces lividans/metabolismo , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Água/metabolismo
11.
Nat Struct Mol Biol ; 12(5): 454-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15852022

RESUMO

Potassium channels catalyze the selective transfer of potassium across the cell membrane and are essential for setting the resting potential in cells, controlling heart rate and modulating the firing pattern in neurons. Tetraethylammonium (TEA) blocks ion conduction through potassium channels in a voltage-dependent manner from both sides of the membrane. Here we show the structural basis of TEA blockade by cocrystallizing the prokaryotic potassium channel KcsA with two selective TEA analogs. TEA binding at both sites alters ion occupancy in the selectivity filter; these findings underlie the mutual destabilization and voltage-dependence of TEA blockade. We propose that TEA blocks potassium channels by acting as a potassium analog at the dehydration transition step during permeation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/química , Canais de Potássio/metabolismo , Tetraetilamônio/química , Tetraetilamônio/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia
12.
Chem ; 6(4): 1007-1017, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33709040

RESUMO

Designed DNA-DNA interactions are investigated for their ability to modulate protein packing within single crystals of mutant green fluorescent proteins (mGFPs) functionalized with a single DNA strand (mGFP-DNA). We probe the effects of DNA sequence, length, and protein-attachment position on the formation and protein packing of mGFP-DNA crystals. Notably, when complementary mGFP-DNA conjugates are introduced to one another, crystals form with nearly identical packing parameters, regardless of sequence if the number of bases is equivalent. DNA complementarity is essential, because experiments with non-complementary sequences produce crystals with different protein arrangements. Importantly, the DNA length and its position of attachment on the protein markedly influence the formation of and protein packing within single crystals. This work shows how designed DNA interactions can be used to influence the growth and packing in X-ray diffraction quality protein single crystals and is thus an important step forward in protein crystal engineering.

13.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 10): 1043-53, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18931411

RESUMO

Two structures of the nucleotide-bound NG domain of Ffh, the GTPase subunit of the bacterial signal recognition particle (SRP), have been determined at ultrahigh resolution in similar crystal forms. One is GDP-bound and one is GMPPCP-bound. The asymmetric unit of each structure contains two protein monomers, each of which exhibits differences in nucleotide-binding conformation and occupancy. The GDP-bound Ffh NG exhibits two binding conformations in one monomer but not the other and the GMPPCP-bound protein exhibits full occupancy of the nucleotide in one monomer but only partial occupancy in the other. Thus, under the same solution conditions, each crystal reveals multiple binding states that suggest that even when nucleotide is bound its position in the Ffh NG active site is dynamic. Some differences in the positioning of the bound nucleotide may arise from differences in the crystal-packing environment and specific factors that have been identified include the relative positions of the N and G domains, small conformational changes in the P-loop, the positions of waters buried within the active site and shifts in the closing loop that packs against the guanine base. However, ;loose' binding may have biological significance in promoting facile nucleotide exchange and providing a mechanism for priming the SRP GTPase prior to its activation in its complex with the SRP receptor.


Assuntos
GTP Fosfo-Hidrolases/química , Nucleotídeos/metabolismo , Sítios de Ligação , Cristalização , Modelos Moleculares , Conformação Proteica
14.
Proteins ; 66(4): 984-95, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17186523

RESUMO

FtsY and Ffh are structurally similar prokaryotic Signal Recognition Particle GTPases that play an essential role in the Signal Recognition Particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The two GTPases assemble in a GTP-dependent manner to form a heterodimeric SRP targeting complex. We report here the 2.1 A X-ray structure of FtsY from T. aquaticus bound to GDP. The structure of the monomeric protein reveals, unexpectedly, canonical binding interactions for GDP. A comparison of the structures of the monomeric and complexed FtsY NG GTPase domain suggests that it undergoes a conformational change similar to that of Ffh NG during the assembly of the symmetric heterodimeric complex. However, in contrast to Ffh, in which the C-terminal helix shifts independently of the other subdomains, the C-terminal helix and N domain of T. aquaticus FtsY together behave as a rigid body during assembly, suggesting distinct mechanisms by which the interactions of the NG domain "module" are regulated in the context of the two SRP GTPases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Thermus/enzimologia , Proteínas de Bactérias/genética , Cristalografia por Raios X , GTP Fosfo-Hidrolases/genética , Guanosina Difosfato/química , Hidrólise , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética , Homologia Estrutural de Proteína , Thermus/química , Thermus/genética
15.
J Mol Biol ; 360(3): 631-43, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16780874

RESUMO

The signal recognition particle (SRP) GTPases Ffh and FtsY play a central role in co-translational targeting of proteins, assembling in a GTP-dependent manner to generate the SRP targeting complex at the membrane. A suite of residues in FtsY have been identified that are essential for the hydrolysis of GTP that accompanies disengagement. We have argued previously on structural grounds that this region mediates interactions that serve to activate the complex for disengagement and term it the activation region. We report here the structure of a complex of the SRP GTPases formed in the presence of GDP:AlF4. This complex accommodates the putative transition-state analog without undergoing significant change from the structure of the ground-state complex formed in the presence of the GTP analog GMPPCP. However, small shifts that do occur within the shared catalytic chamber may be functionally important. Remarkably, an external nucleotide interaction site was identified at the activation region, revealed by an unexpected contaminating GMP molecule bound adjacent to the catalytic chamber. This site exhibits conserved sequence and structural features that suggest a direct interaction with RNA plays a role in regulating the activity of the SRP targeting complex.


Assuntos
Compostos de Alumínio/química , Proteínas de Bactérias/química , Fluoretos/química , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Partícula de Reconhecimento de Sinal/química , Sítios de Ligação/genética , Cristalografia por Raios X , Dimerização , Fluorometria , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Magnésio/química , Modelos Moleculares , Conformação Molecular , Ligação Proteica , RNA Bacteriano/química , Thermus/química
16.
Structure ; 10(3): 413-24, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12005439

RESUMO

Beta-lactamases hydrolyze beta-lactam antibiotics and are the leading cause of bacterial resistance to these drugs. Although beta-lactamases have been extensively studied, structures of the substrate-enzyme and product-enzyme complexes have proven elusive. Here, the structure of a mutant AmpC in complex with the beta-lactam cephalothin in its substrate and product forms was determined by X-ray crystallography to 1.53 A resolution. The acyl-enzyme intermediate between AmpC and cephalothin was determined to 2.06 A resolution. The ligand undergoes a dramatic conformational change as the reaction progresses, with the characteristic six-membered dihydrothiazine ring of cephalothin rotating by 109 degrees. These structures correspond to all three intermediates along the reaction path and provide insight into substrate recognition, catalysis, and product expulsion.


Assuntos
Proteínas de Bactérias , Cefalotina/química , Cefalotina/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo , Amidas/química , Amidas/metabolismo , Sítios de Ligação , Cefalosporinas/química , Cefalosporinas/metabolismo , Cristalografia por Raios X , Hidrolases/química , Hidrolases/metabolismo , Ligantes , Modelos Moleculares , Estrutura Terciária de Proteína
17.
Sci Rep ; 6: 33019, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605430

RESUMO

Hereditary Parkinson's disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific proteins for modification remain largely unexplored. Here, we show that the C-terminal GTPase (cGTPase) of the Parkin primary substrate human Miro is necessary and sufficient for efficient ubiquitination. We present several new X-ray crystal structures of both human Miro1 and Miro2 that reveal substrate recognition and ubiquitin transfer to be specific to particular protein domains and lysine residues. We also provide evidence that Parkin substrate recognition is functionally separate from substrate modification. Finally, we show that prioritization for modification of a specific lysine sidechain of the cGTPase (K572) within human Miro1 is dependent on both its location and chemical microenvironment. Activation of Parkin by phosphorylation or by binding of pUb is required for prioritization of K572 for modification, suggesting that Parkin activation and acquisition of substrate specificity are coupled.


Assuntos
Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Cristalografia por Raios X , Humanos , Lisina/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Domínios Proteicos , Estrutura Quaternária de Proteína , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas rho de Ligação ao GTP/genética
18.
J Mol Biol ; 335(4): 905-21, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14698288

RESUMO

Enzymes that salvage 6-oxopurines, including hypoxanthine phosphoribosyltransferases (HPRTs), are potential targets for drugs in the treatment of diseases caused by protozoan parasites. For this reason, a number of high-resolution X-ray crystal structures of the HPRTs from protozoa have been reported. Although these structures did not reveal why HPRTs need to form dimers for catalysis, they revealed the existence of potentially relevant interactions involving residues in a loop of amino acid residues adjacent to the dimer interface, but the contributions of these interactions to catalysis remained poorly understood. The loop, referred to as active-site loop I, contains an unusual non-proline cis-peptide and is composed of residues that are structurally analogous with Leu67, Lys68, and Gly69 in the human HPRT. Functional analyses of site-directed mutations (K68D, K68E, K68N, K68P, and K68R) in the HPRT from Trypanosoma cruzi, etiologic agent of Chagas' disease, show that the side-chain at position 68 can differentially influence the K(m) values for all four substrates as well as the k(cat) values for both IMP formation and pyrophosphorolysis. Also, the results for the K68P mutant are inconsistent with a cis-trans peptide isomerization-assisted catalytic mechanism. These data, together with the results of structural studies of the K68R mutant, reveal that the side-chain of residue 68 does not participate directly in reaction chemistry, but it strongly influences the relative efficiencies for IMP formation and pyrophosphorolysis, and the prevalence of lysine at position 68 in the HPRT of the majority of eukaryotes is consistent with there being a biological role for nucleotide pyrophosphorolysis.


Assuntos
Difosfatos/metabolismo , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/metabolismo , Nucleotídeos de Purina/biossíntese , Trypanosoma cruzi/enzimologia , Substituição de Aminoácidos , Animais , Arginina/genética , Arginina/metabolismo , Sítios de Ligação , Dimerização , Humanos , Ligação de Hidrogênio , Hipoxantina Fosforribosiltransferase/genética , Inosina Monofosfato/metabolismo , Isomerismo , Cinética , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Mutação , Prolina/química , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Purinonas/metabolismo , Trypanosoma cruzi/genética
19.
J Mol Biol ; 320(4): 783-99, 2002 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-12095255

RESUMO

The NG domain of the prokaryotic signal recognition protein Ffh is a two-domain GTPase that comprises part of the prokaryotic signal recognition particle (SRP) that functions in co-translational targeting of proteins to the membrane. The interface between the N and G domains includes two highly conserved sequence motifs and is adjacent in sequence and structure to one of the conserved GTPase signature motifs. Previous structural studies have shown that the relative orientation of the two domains is dynamic. The N domain of Ffh has been proposed to function in regulating the nucleotide-binding interactions of the G domain. However, biochemical studies suggest a more complex role for the domain in integrating communication between signal sequence recognition and interaction with receptor. Here, we report the structure of the apo NG GTPase of Ffh from Thermus aquaticus refined at 1.10 A resolution. Although the G domain is very well ordered in this structure, the N domain is less well ordered, reflecting the dynamic relationship between the two domains previously inferred. We demonstrate that the anisotropic displacement parameters directly visualize the underlying mobility between the two domains, and present a detailed structural analysis of the packing of the residues, including the critical alpha4 helix, that comprise the interface. Our data allows us to propose a structural explanation for the functional significance of sequence elements conserved at the N/G interface.


Assuntos
Proteínas de Bactérias/química , GTP Fosfo-Hidrolases/química , Partícula de Reconhecimento de Sinal/química , Thermus/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de Proteína
20.
Proteins ; 54(2): 222-30, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14696184

RESUMO

Ffh is the signal sequence recognition and targeting subunit of the prokaryotic signal recognition particle (SRP). Previous structural studies of the NG GTPase domain of Ffh demonstrated magnesium-dependent and magnesium-independent binding conformations for GDP and GMPPNP that are believed to reflect novel mechanisms for exchange and activation in this member of the GTPase superfamily. The current study of the NG GTPase bound to Mg(2+)GDP reveals two new binding conformations-in the first the magnesium interactions are similar to those seen previously, however, the protein undergoes a conformational change that brings a conserved aspartate into its second coordination sphere. In the second, the protein conformation is similar to that seen previously, but the magnesium coordination sphere is disrupted so that only five oxygen ligands are present. The loss of the coordinating water molecule, at the position that would be occupied by the oxygen of the gamma-phosphate of GTP, is consistent with that position being privileged for exchange during phosphate release. The available structures of the GDP-bound protein provide a series of structural snapshots that illuminate steps along the pathway of GDP release following GTP hydrolysis.


Assuntos
Proteínas de Bactérias/química , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Magnésio/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Motivos de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Hidrólise , Ligantes , Modelos Moleculares , Oxigênio/metabolismo , Conformação Proteica , Thermus/química , Thermus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA