Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 233, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951788

RESUMO

BACKGROUND: Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS: A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS: Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Probióticos , Humanos , Bifidobacterium/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/genética , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Doenças Inflamatórias Intestinais/microbiologia , Adulto Jovem , Idoso , Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Filogenia , Fezes/microbiologia , RNA Ribossômico 16S/genética , Fenótipo , Adolescente , Antibacterianos/farmacologia
2.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396840

RESUMO

The therapeutic management of Crohn's disease (CD), a chronic relapsing-remitting inflammatory bowel disease (IBD), is highly challenging. Surgical resection is sometimes a necessary procedure even though it is often associated with postoperative recurrences (PORs). Tofacitinib, an orally active small molecule Janus kinase inhibitor, is an anti-inflammatory drug meant to limit PORs in CD. Whereas bidirectional interactions between the gut microbiota and the relevant IBD drug are crucial, little is known about the impact of tofacitinib on the gut microbiota. The HLA-B27 transgenic rat is a good preclinical model used in IBD research, including for PORs after ileocecal resection (ICR). In the present study, we used shotgun metagenomics to first delineate the baseline composition and determinants of the fecal microbiome of HLA-B27 rats and then to evaluate the distinct impact of either tofacitinib treatment, ileocecal resection or the cumulative effect of both interventions on the gut microbiota in these HLA-B27 rats. The results confirmed that the microbiome of the HLA-B27 rats was fairly different from their wild-type littermates. We demonstrated here that oral treatment with tofacitinib does not affect the gut microbial composition of HLA-B27 rats. Of note, we showed that ICR induced an intense loss of bacterial diversity together with dramatic changes in taxa relative abundances. However, the oral treatment with tofacitinib neither modified the alpha-diversity nor exacerbated significant modifications in bacterial taxa induced by ICR. Collectively, these preclinical data are rather favorable for the use of tofacitinib in combination with ICR to address Crohn's disease management when considering microbiota.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Microbiota , Piperidinas , Pirimidinas , Ratos , Animais , Doença de Crohn/tratamento farmacológico , Doença de Crohn/cirurgia , Doença de Crohn/complicações , Ratos Transgênicos , Antígeno HLA-B27 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/complicações , Gerenciamento Clínico
3.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012472

RESUMO

Microbial agents have promise for the bioremediation of Pb(II)-polluted environments and wastewater, the biodecontamination of foods, and the alleviation of toxicity in living organisms. The dairy bacterium Propionibacterium freudenreichii is poorly able to remove Pb(II) from aqueous solution at 25 ppm, ranging from 0 to 10% of initial concentration. Here, we report on an original strong enhancement of this activity (ranging from 75% to 93%, p < 0.01) following the addition of a polysorbate detergent (Tween® 80) during or either shortly after the growth of a P. freudenreichii culture. We evaluated the optimal Tween® 80 concentration for pretreatment conditions, documented the role of other detergents, and explored the possible mechanisms involved. Our results reveal a novel, environmentally friendly, low-cost pretreatment procedure for enhancing the selective removal of lead from water by probiotic-documented bacteria.


Assuntos
Propionibacterium freudenreichii , Propionibacterium , Chumbo , Polissorbatos , Água
4.
Infect Immun ; 89(9): e0073420, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33820816

RESUMO

Along with respiratory tract disease per se, viral respiratory infections can also cause extrapulmonary complications with a potentially critical impact on health. In the present study, we used an experimental model of influenza A virus (IAV) infection to investigate the nature and outcome of the associated gut disorders. In IAV-infected mice, the signs of intestinal injury and inflammation, altered gene expression, and compromised intestinal barrier functions peaked on day 7 postinfection. As a likely result of bacterial component translocation, gene expression of inflammatory markers was upregulated in the liver. These changes occurred concomitantly with an alteration of the composition of the gut microbiota and with a decreased production of the fermentative, gut microbiota-derived products short-chain fatty acids (SCFAs). Gut inflammation and barrier dysfunction during influenza were not attributed to reduced food consumption, which caused in part gut dysbiosis. Treatment of IAV-infected mice with SCFAs was associated with an enhancement of intestinal barrier properties, as assessed by a reduction in the translocation of dextran and a decrease in inflammatory gene expression in the liver. Lastly, SCFA supplementation during influenza tended to reduce the translocation of the enteric pathogen Salmonella enterica serovar Typhimurium and to enhance the survival of doubly infected animals. Collectively, influenza virus infection can remotely impair the gut's barrier properties and trigger secondary enteric infections. The latter phenomenon can be partially countered by SCFA supplementation.


Assuntos
Infecções por Enterobacteriaceae/etiologia , Ácidos Graxos Voláteis/biossíntese , Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Humana/complicações , Influenza Humana/virologia , Mucosa Intestinal/metabolismo , Interações Microbianas , Suscetibilidade a Doenças , Disbiose , Infecções por Enterobacteriaceae/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/metabolismo , Mucosa Intestinal/imunologia
5.
FASEB J ; 34(9): 12615-12633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729971

RESUMO

Although it is known that zinc has several beneficial roles in the context of gut inflammation, the underlying mechanisms have not been extensively characterized. Zinc (Zn) is known to be the primary physiological inducer of the expression of the metallothionein (MT) superfamily of small stress-responsive proteins. The expression of MTs in various tissues is induced or enhanced (including the gastrointestinal tract (GIT)) by a variety of stimuli, including infection and inflammation. However, the MTs' exact role in inflammation is still subject to debate. In order to establish whether or not MTs are the sole vectors in the Zn-based modulation of intestinal inflammation, we used transcriptomic and metagenomic approaches to assess the potential effect of dietary Zn, the mechanisms underlying the MTs' beneficial effects, and the induction of previously unidentified mediators. We found that the expression of endogenous MTs in the mouse GIT was stimulated by an optimized dietary supplementation with Zn. The protective effects of dietary supplementation with Zn were then evaluated in mouse models of chemically induced colitis. The potential contribution of MTs and other pathways was explored via transcriptomic analyses of the ileum and colon in Zn-treated mice. The microbiota's role was also assessed via fecal 16S rRNA sequencing. We found that high-dose dietary supplementation with Zn induced the expression of MT-encoding genes in the colon of healthy mice. We next demonstrated that the Zn diet significantly protected mice in the two models of induced colitis. When comparing Zn-treated and control mice, various genes were found to be differentially expressed in the colon and the ileum. Finally, we found that Zn supplementation did not modify the overall structure of the fecal microbiota, with the exception of (i) a significant increase in endogenous Clostridiaceae, and (ii) some subtle but specific changes at the family and genus levels. Our results emphasize the beneficial effects of excess dietary Zn on the prevention of colitis and inflammatory events in mouse models. The main underlying mechanisms were driven by the multifaceted roles of MTs and the other potential molecular mediators highlighted by our transcriptomic analyses although we cannot rule out contributions by other factors from the host and/or the microbiota.


Assuntos
Colite , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Metalotioneína/metabolismo , Transcriptoma , Zinco/farmacologia , Animais , Colite/tratamento farmacológico , Colite/metabolismo , Colite/microbiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Suplementos Nutricionais , Fezes/microbiologia , Feminino , Íleo/efeitos dos fármacos , Íleo/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Zinco/administração & dosagem
6.
Infect Immun ; 85(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872237

RESUMO

Signaling through Toll-like receptors (TLRs), the main receptors in innate immunity, is essential for the defense of mucosal surfaces. It was previously shown that systemic TLR5 stimulation by bacterial flagellin induces an immediate, transient interleukin-22 (IL-22)-dependent antimicrobial response to bacterial or viral infections of the mucosa. This process was dependent on the activation of type 3 innate lymphoid cells (ILCs). The objective of the present study was to analyze the effects of flagellin treatment in a murine model of oral infection with Yersinia pseudotuberculosis (an invasive, Gram-negative, enteropathogenic bacterium that targets the small intestine). We found that systemic administration of flagellin significantly increased the survival rate after intestinal infection (but not systemic infection) by Y. pseudotuberculosis This protection was associated with a low bacterial count in the gut and the spleen. In contrast, no protection was afforded by administration of the TLR4 agonist lipopolysaccharide, suggesting the presence of a flagellin-specific effect. Lastly, we found that TLR5- and MyD88-mediated signaling was required for the protective effects of flagellin, whereas neither lymphoid cells nor IL-22 was involved.


Assuntos
Flagelina/imunologia , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/imunologia , Animais , Modelos Animais de Doenças , Feminino , Flagelina/administração & dosagem , Interleucinas/genética , Mucosa Intestinal/microbiologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Proteínas Recombinantes de Fusão , Transdução de Sinais , Receptores Toll-Like/metabolismo , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/mortalidade , Interleucina 22
8.
Food Microbiol ; 53(Pt A): 30-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611167

RESUMO

A mixture of nine microorganisms (six bacteria and three yeasts) from the microflora of surface-ripened cheeses were subjected to in vitro digestive stress in a three-compartment "dynamic gastrointestinal digester" (DIDGI). We studied the microorganisms (i) grown separately in culture medium only (ii) grown separately in culture medium and then mixed, (iii) grown separately in culture medium and then included in a rennet gel and (iv) grown together in smear-ripened cheese. The yeasts Geotrichum candidum, Kluyveromyces lactis and Debaryomyces hansenii, were strongly resistant to the whole DIDGI process (with a drop in viable cell counts of less than <1 log CFU mL(-1)) and there were no significant differences between lab cultures and cheese-grown cultures. Ripening bacteria such as Hafnia alvei survived gastric stress less well when grown in cheese (with no viable cells after 90 min of exposure of the cheese matrix, compared with 6 CFU mL(-1) in lab cultures). The ability of Corynebacterium casei and Staphylococcus equorum to withstand digestive stress was similar for cheese and pure culture conditions. When grow in a cheese matrix, Brevibacterium aurantiacum and Arthrobacter arilaitensis were clearly more sensitive to the overall digestive process than when grown in pure cultures. Lactococcus lactis displayed poorer survival in gastric and duodenal compartments when it had been grown in cheese. In vivo experiments in BALB/c mice agreed with the DIDGI experiments and confirmed the latter's reliability.


Assuntos
Fenômenos Fisiológicos Bacterianos , Queijo/microbiologia , Trato Gastrointestinal/microbiologia , Leveduras/fisiologia , Animais , Brevibacterium/isolamento & purificação , Brevibacterium/fisiologia , Simulação por Computador , Corynebacterium/isolamento & purificação , Corynebacterium/fisiologia , Digestão , Trato Gastrointestinal/química , Geotrichum/isolamento & purificação , Geotrichum/fisiologia , Hafnia alvei/isolamento & purificação , Hafnia alvei/metabolismo , Técnicas In Vitro , Lactococcus lactis/isolamento & purificação , Lactococcus lactis/fisiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Reprodutibilidade dos Testes , Saccharomycetales/isolamento & purificação , Saccharomycetales/fisiologia , Leveduras/classificação
9.
Food Microbiol ; 53(Pt A): 60-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611170

RESUMO

Dairy propionibacteria (PAB) are used as a ripening starter in combination with Lactic acid bacteria (LAB) for dairy products such as Swiss-type cheese. LAB and PAB have also been studied for their probiotic properties but little is still known about their individual and/or synergistic beneficial effects within dairy matrices. In the context of a rising incidence of Inflammatory Bowel Diseases, it has become crucial to evaluate the immunomodulatory potential of bacteria ingested in large numbers via dairy products. We therefore selected different strains and combinations of technological LAB and PAB. We determined their immunomodulatory potential by IL-10 and IL-12 induction, in human peripheral blood mononuclear cells, on either single or mixed cultures, grown on laboratory medium or directly in milk. Milk was fermented with selected anti-inflammatory strains of LAB or PAB/LAB mixed cultures and the resulting bacterial fractions were also evaluated for these properties, together with starter viability and optimum technological aspects. The most promising fermented milks were evaluated in the context of TNBS- or DSS-induced colitis in mice. The improvement in inflammatory parameters evidenced an alleviation of colitis symptoms as a result of fermented milk consumption. This effect was clearly strain-dependent and modulated by growth within a fermented dairy product. These findings offer new tools and perspectives for the development of immunomodulatory fermented dairy products for targeted populations.


Assuntos
Produtos Fermentados do Leite/imunologia , Produtos Fermentados do Leite/microbiologia , Imunomodulação , Lactobacillaceae/fisiologia , Propionibacterium/fisiologia , Animais , Humanos , Doenças Inflamatórias Intestinais/terapia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-12/biossíntese , Interleucina-12/imunologia , Lactobacillaceae/imunologia , Leucócitos Mononucleares/imunologia , Camundongos , Probióticos/metabolismo , Propionibacterium/imunologia
10.
Infect Immun ; 83(5): 2053-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754199

RESUMO

Bacterial superantigens (SAgs) are immunostimulatory toxins that induce acute diseases mainly through the massive release of inflammatory cytokines. Yersinia pseudotuberculosis is the only Gram-negative bacterium known to produce a SAg (Y. pseudotuberculosis-derived mitogen [YPM]). This SAg binds major histocompatibility complex class II molecules on antigen-presenting cells and T cell receptors (TcR) bearing the variable region Vß3, Vß9, Vß13.1, or Vß13.2 (in humans) and Vß7 or Vß8 (in mice). We have previously shown that YPM exacerbates the virulence of Y. pseudotuberculosis in mice. With a view to understanding the mechanism of YPM's toxicity, we compared the immune response in BALB/c mice infected with a YPM-producing Y. pseudotuberculosis or the corresponding isogenic, SAg-deficient mutant. Five days after infection, we observed strong CD4(+) Vß7(+) T cell expansion and marked interleukin-4 (IL-4) production in mice inoculated with SAg-producing Y. pseudotuberculosis. These phenomena were correlated with the activation of ypm gene transcription in liver and spleen. A transcriptomic analysis revealed that the presence of YPM also increased expression of granzyme and perforin genes in the host's liver and spleen. This expression was attributed to a CD4(+) T cell subset, rather than to natural killer T (NKT) cells that display a TcR with a Vß region that is potentially recognized by YPM. Increased production of cytotoxic molecules was correlated with hepatotoxicity, as demonstrated by an increase in plasma alanine aminotransferase activity. Our results demonstrate that YPM activates a potentially hepatotoxic CD4(+) T cell population.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Granzimas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Superantígenos/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Perfilação da Expressão Gênica , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos BALB C , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/microbiologia
11.
Appl Environ Microbiol ; 81(16): 5344-9, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26025906

RESUMO

Lactic acid bacteria are found in the gastrointestinal tract of mammals and have received tremendous attention due to their health-promoting properties. We report the development of two dual-color luciferase-producing Lactobacillus (Lb.) plantarum and Lactococcus (Lc.) lactis strains for noninvasive simultaneous tracking in the mouse gastrointestinal tract. We previously described the functional expression of the red luciferase mutant (CBRluc) from Pyrophorus plagiophthalamus in Lb. plantarum NCIMB8826 and Lc. lactis MG1363 (C. Daniel, S. Poiret, V. Dennin, D. Boutillier, and B. Pot, Appl Environ Microbiol 79:1086-1094, 2013, http://dx.doi.org/10.1128/AEM.03221-12). In this study, we determined that CBRluc is a better-performing luciferase for in vivo localization of both lactic acid bacteria after oral administration than the green click beetle luciferase mutant construct developed in this study. We further established the possibility to simultaneously detect red- and green-emitting lactic acid bacteria by dual-wavelength bioluminescence imaging in combination with spectral unmixing. The difference in spectra of light emission by the red and green click beetle luciferase mutants and dual bioluminescence detection allowed in vitro and in vivo quantification of the red and green emitted signals; thus, it allowed us to monitor the dynamics and fate of the two bacterial populations simultaneously. Persistence and viability of both strains simultaneously administered to mice in different ratios was studied in vivo in anesthetized mice and ex vivo in mouse feces. The application of dual-luciferase-labeled bacteria has considerable potential to simultaneously study the interactions and potential competitions of different targeted bacteria and their hosts.


Assuntos
Cor , Trato Gastrointestinal/microbiologia , Lactobacillus plantarum/fisiologia , Lactococcus lactis/fisiologia , Luciferases/análise , Medições Luminescentes/métodos , Animais , Genes Reporter , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Luciferases/genética , Camundongos , Viabilidade Microbiana , Coloração e Rotulagem
12.
Gut ; 62(12): 1714-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23172891

RESUMO

OBJECTIVE: Inflammatory bowel diseases (IBD) have been intrinsically linked to a deregulated cytokine network, but novel therapeutic principles are urgently needed. Here we identify the interleukin (IL)-33 and its receptor ST2 as key negative regulators of wound healing and permeability in the colon of mice. DESIGN: Expression of IL-33 and ST2 was determined by qRT-PCR, ELISA, immunohistochemistry and western-blot analysis. Wild-type and St2(-/-) mice were used in wound healing experiments and in two experimental models of IBD triggered by 2,4,6-trinitrobenzene sulphonic acid or dextran sodium sulphate (DSS). Neutralisation of ST2 was performed by using a specific blocking antibody. RESULTS: Nuclear localisation and enhanced expression of IL-33 in myofibroblasts and enterocytes was linked to disease involvement independently of inflammation, while the expression of ST2 was primarily restricted to the colonic epithelia. In two experimental models of IBD, genetic ablation of ST2 significantly improved signs of colitis, while a sustained epithelial expression of the cyto-protective factor connexin-43 was observed in DSS-treated St2-deficient mice. Unexpectedly, absence of ST2 in non-hematopoietic cells was sufficient to protect against colitis. Consistently, specific inhibition of endogenous ST2-mediated signalling by treatment with neutralising antibody improved DSS-induced colitis. In addition, IL-33 treatment impaired epithelial barrier permeability in vitro and in vivo, whereas absence of ST2 enhanced wound healing response upon acute mechanical injury in the colon. CONCLUSIONS: Our study unveiled a novel non-hematopoietic function of IL-33 in epithelial barrier function and wound healing. Therefore, blocking the IL-33/ST2 axis may represent an efficient therapy in IBD.


Assuntos
Colite Ulcerativa/etiologia , Interleucinas/fisiologia , Receptores de Interleucina/fisiologia , Animais , Western Blotting , Células CACO-2 , Colite Ulcerativa/fisiopatologia , Colite Ulcerativa/terapia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Reação em Cadeia da Polimerase em Tempo Real , Cicatrização/fisiologia
13.
Arch Toxicol ; 87(10): 1787-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23503628

RESUMO

Chronic ingestion of environmental heavy metals such as lead (Pb) and cadmium (Cd) causes various well-documented pathologies in specific target organs following their intestinal absorption and subsequent accumulation. However, little is known about the direct impact of the non-absorbed heavy metals on the small intestine and the colon homeostasis. The aim of our study was to compare the specific bioaccumulation and retention of Cd and Pb and their effect on the essential metal balance in primary organs, with those occurring specifically in the gastrointestinal tract of mice. Various doses of Cd (5, 20 and 100 mg l(-1)) and Pb (100 and 500 mg l(-1)) chloride salts were provided in drinking water for subchronic to chronic exposures (4, 8 and 12 weeks). In contrast to a clear dose- and time-dependent accumulation in target organs, results showed that intestines are poor accumulators for Cd and Pb. Notwithstanding, changes in gene expression of representative intestinal markers revealed that the transport-, oxidative- and inflammatory status of the gut epithelium of the duodenum, ileum and colon were specifically affected by both heavy metal species. Additionally, in vivo comet assay used to evaluate the impact of heavy metals on DNA damage showed clear genotoxic activities of Cd, on both the upper and distal parts of the gastrointestinal tract. Altogether, these results outline the resilience of the gut which balances the various effects of chronic Cd and Pb in the intestinal mucosa. Collectively, it provides useful information for the risk assessment of heavy metals in gut homeostasis and further disease's susceptibility.


Assuntos
Cloreto de Cádmio/toxicidade , Intestinos/efeitos dos fármacos , Chumbo/toxicidade , Metais Pesados/toxicidade , Animais , Disponibilidade Biológica , Cloreto de Cádmio/administração & dosagem , Cloreto de Cádmio/farmacocinética , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Absorção Intestinal , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Chumbo/administração & dosagem , Chumbo/farmacocinética , Metais Pesados/administração & dosagem , Metais Pesados/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Mutagênicos/administração & dosagem , Mutagênicos/farmacocinética , Mutagênicos/toxicidade , Fatores de Tempo , Distribuição Tecidual
14.
Microb Biotechnol ; 16(3): 618-631, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541039

RESUMO

Yarrowia lipolytica is a dimorphic oleaginous non-conventional yeast widely used as a powerful host for expressing heterologous proteins, as well as a promising source of engineered cell factories for various applications. This microorganism has a documented use in Feed and Food and a GRAS (generally recognized as safe) status. Moreover, in vivo studies demonstrated a beneficial effect of this yeast on animal health. However, despite the focus on Y. lipolytica for the industrial manufacturing of heterologous proteins and for probiotic effects, its potential for oral delivery of recombinant therapeutic proteins has seldom been evaluated in mammals. As the first steps towards this aim, we engineered two Y. lipolytica strains, a dairy strain and a laboratory strain, to produce the model fluorescent protein mCherry. We demonstrated that both Y. lipolytica strains transiently persisted for at least 1 week after four daily oral administrations and they maintained the active expression of mCherry in the mouse intestine. We used confocal microscopy to image individual Y. lipolytica cells of freshly collected intestinal tissues. They were found essentially in the lumen and they were rarely in contact with epithelial cells while transiting through the ileum, caecum and colon of mice. Taken as a whole, our results have shown that fluorescent Y. lipolytica strains constitute novel tools to study the persistence and dynamics of orally administered yeasts which could be used in the future as oral delivery vectors for the secretion of active therapeutic proteins in the gut.


Assuntos
Yarrowia , Animais , Camundongos , Yarrowia/genética , Proteínas Recombinantes/genética , Imagem Óptica , Intestinos , Engenharia Metabólica/métodos , Mamíferos/metabolismo
15.
Nutrients ; 15(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140362

RESUMO

The first 1000 days of life is a critical period that contributes significantly to the programming of an individual's future health. Among the many changes that occur during this period early in life, there is growing evidence that the establishment of healthy gut microbiota plays an important role in the prevention of both short- and long-term health problems. Numerous publications suggest that the quality of the gut microbiota colonisation depends on several dietary factors, including breastfeeding. In this respect, a relationship between breastfeeding and the risk of inflammatory bowel disease (IBD) has been suggested. IBDs are chronic intestinal diseases, and perinatal factors may be partly responsible for their onset. We review the existence of links between breastfeeding and IBD based on experimental and clinical studies. Overall, despite encouraging experimental data in rodents, the association between breastfeeding and the development of IBD remains controversial in humans, partly due to the considerable heterogeneity between clinical studies. The duration of exclusive breastfeeding is probably decisive for its lasting effect on IBD. Thus, specific improvements in our knowledge could support dietary interventions targeting the gut microbiome, such as the early use of prebiotics, probiotics or postbiotics, in order to prevent the disease.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Probióticos , Humanos , Feminino , Aleitamento Materno , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/prevenção & controle , Prebióticos
16.
World J Gastroenterol ; 29(5): 851-866, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36816618

RESUMO

BACKGROUND: Postoperative recurrence (POR) after ileocecal resection (ICR) affects most Crohn's disease patients within 3-5 years after surgery. Adherent-invasive Escherichia coli (AIEC) typified by the LF82 strain are pathobionts that are frequently detected in POR of Crohn's disease and have a potential role in the early stages of the disease pathogenesis. Saccharomyces cerevisiae CNCM I-3856 is a probiotic yeast reported to inhibit AIEC adhesion to intestinal epithelial cells and to favor their elimination from the gut. AIM: To evaluate the efficacy of CNCM I-3856 in preventing POR induced by LF82 in an HLA-B27 transgenic (TgB27) rat model. METHODS: Sixty-four rats [strain F344, 38 TgB27, 26 control non-Tg (nTg)] underwent an ICR at the 12th wk (W12) of life and were sacrificed at the 18th wk (W18) of life. TgB27 rats were challenged daily with oral administration of LF82 (109 colony forming units (CFUs)/day (d), n = 8), PBS (n = 5), CNCM I-3856 (109 CFUs/d, n = 7) or a combination of LF82 and CNCM I-3856 (n = 18). nTg rats receiving LF82 (n = 5), PBS (n = 5), CNCM I-3856 (n = 7) or CNCM I-3856 and LF82 (n = 9) under the same conditions were used as controls. POR was analyzed using macroscopic (from 0 to 4) and histologic (from 0 to 6) scores. Luminal LF82 quantifications were performed weekly for each animal. Adherent LF82 and inflammatory/regulatory cytokines were quantified in biopsies at W12 and W18. Data are expressed as the median with the interquartile range. RESULTS: nTg animals did not develop POR. A total of 7/8 (87%) of the TgB27 rats receiving LF82 alone had POR (macroscopic score ≥ 2), which was significantly prevented by CNCM I-3856 administration [6/18 (33%) TgB27 rats, P = 0.01]. Macroscopic lesions were located 2 cm above the anastomosis in the TgB27 rats receiving LF82 alone and consisted of ulcerations with a score of 3.5 (2 - 4). Seven out of 18 TgB27 rats (39%) receiving CNCM I-3856 and LF82 had no macroscopic lesions. Compared to untreated TgB27 animals receiving LF82 alone, coadministration of CNCM I-3856 and LF82 significantly reduced the macroscopic [3.5 (2 - 4) vs 1 (0 - 3), P = 0.002] and histological lesions by more than 50% [4.5 (3.3 - 5.8) vs 2 (1.3 - 3), P = 0.003]. The levels of adherent LF82 were correlated with anastomotic macroscopic scores in TgB27 rats (r = 0.49, P = 0.006), with a higher risk of POR in animals having high levels of luminal LF82 (71.4% vs 25%, P = 0.02). Administration of CNCM I-3856 significantly reduced the levels of luminal and adherent LF82, increased the production of interleukin (IL)-10 and decreased the production of IL-23 and IL-17 in TgB27 rats. CONCLUSION: In a reliable model of POR induced by LF82 in TgB27 rats, CNCM I-3856 prevents macroscopic POR by decreasing LF82 infection and gut inflammation.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Ratos , Animais , Doença de Crohn/patologia , Escherichia coli , Saccharomyces cerevisiae , Ratos Transgênicos , Antígeno HLA-B27 , Mucosa Intestinal/patologia , Ratos Endogâmicos F344 , Aderência Bacteriana
17.
Appl Environ Microbiol ; 78(6): 1765-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247154

RESUMO

Propionibacterium freudenreichii is a bacterial species found in Swiss-type cheeses and is also considered for its health properties. The main claimed effect is the bifidogenic property. Some strains were shown recently to display other interesting probiotic potentialities such as anti-inflammatory properties. About 30% of strains were shown to produce a surface exopolysaccharide (EPS) composed of (1→3,1→2)-ß-D-glucan due to a single gene named gtfF. We hypothesized that functional properties of P. freudenreichii strains, including their anti-inflammatory properties, could be linked to the presence of ß-glucan. To evaluate this hypothesis, gtfF genes of three ß-glucan-producing strains were disrupted. These knockout (KO) mutants were complemented with a plasmid harboring gtfF (KO-C mutants). The absence of ß-glucan in KO mutants was verified by immunological detection and transmission electron microscopy. We observed by atomic force microscopy that the absence of ß-glucan in the KO mutant dramatically changed the cell's topography. The capacity to adhere to polystyrene surface was increased for the KO mutants compared to wild-type (WT) strains. Anti-inflammatory properties of WT strains and mutants were analyzed by stimulation of human peripheral blood mononuclear cells (PBMCs). A significant increase of the anti-inflammatory interleukin-10 cytokine production by PBMCs was measured in the KO mutants compared to WT strains. For one strain, the role of ß-glucan in mice gut persistence was assessed, and no significant difference was observed between the WT strain and its KO mutant. Thus, ß-glucan appears to partly hide the anti-inflammatory properties of P. freudenreichii; which is an important result for the selection of probiotic strains.


Assuntos
Glicosiltransferases/metabolismo , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Propionibacterium/imunologia , Propionibacterium/metabolismo , beta-Glucanas/imunologia , beta-Glucanas/metabolismo , Animais , Aderência Bacteriana , Trato Gastrointestinal/microbiologia , Deleção de Genes , Teste de Complementação Genética , Glicosiltransferases/genética , Humanos , Interleucina-10/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Propionibacterium/ultraestrutura
18.
J Crohns Colitis ; 16(10): 1617-1627, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997152

RESUMO

BACKGROUND AND AIMS: Adherent invasive Escherichia coli [AIEC] are recovered with a high frequency from the gut mucosa of Crohn's disease patients and are believed to contribute to the dysbiosis and pathogenesis of this inflammatory bowel disease. In this context, bacteriophage therapy has been proposed for specifically targeting AIEC in the human gut with no deleterious impact on the commensal microbiota. METHODS: The in vitro efficacy and specificity of a seven lytic phage cocktail [EcoActive™] was assessed against [i] 210 clinical AIEC strains, and [ii] 43 non-E. coli strains belonging to the top 12 most common bacterial genera typically associated with a healthy human microbiome. These data were supported by in vivo safety and efficacy assays conducted on healthy and AIEC-colonized mice, respectively. RESULTS: The EcoActive cocktail was effective in vitro against 95% of the AIEC strains and did not lyse any of the 43 non-E. coli commensal strains, in contrast to conventional antibiotics. Long-term administration of the EcoActive cocktail to healthy mice was safe and did not induce dysbiosis according to metagenomic data. Using a murine model of induced colitis of animals infected with the AIEC strain LF82, we found that a single administration of the cocktail failed to alleviate inflammatory symptoms, while mice receiving the cocktail twice a day for 15 days were protected from clinical and microscopical manifestations of inflammation. CONCLUSIONS: Collectively, the data support the approach of AIEC-targeted phage therapy as safe and effective treatment for reducing AIEC levels in the gut of IBD patients.


Assuntos
Bacteriófagos , Colite , Animais , Humanos , Camundongos , Aderência Bacteriana , Colite/patologia , Modelos Animais de Doenças , Disbiose/complicações , Escherichia coli , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Mucosa Intestinal/patologia
19.
Gut Microbes ; 13(1): 1-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779491

RESUMO

The gastrointestinal tract is the main ecological niche in which Lactobacillus strains may provide health benefits in mammals. There is currently a need to characterize host-microbe interactions in space and time by tracking these bacteria in vivo. We combined noninvasive whole-body imaging with ex vivo fluorescence confocal microscopy imaging to monitor the impact of intestinal inflammation on the persistence of orally administered Lactobacillus plantarum NCIMB8826 in healthy and inflamed mouse colons. We developed fluorescent L. plantarum strains and demonstrated that mCherry is the best system for in vivo imaging and ex vivo fluorescence confocal microscopy of these bacteria. We also used whole-body imaging to show that this anti-inflammatory, orally administered strain persists for longer and at higher counts in the inflamed colon than in the healthy colon. We confirmed these results by the ex vivo confocal imaging of colons from mice with experimental colitis for 3 days after induction. Moreover, extended orthogonal view projections enabled us to localize individual L. plantarum in sites that differed for healthy versus inflamed guts. In healthy colons, orally administered bacteria were localized in the lumen (in close contact with commensal bacteria) and sometimes in the crypts (albeit very rarely in contact with intestinal cells). The bacteria were observed within and outside the mucus layer. In contrast, L. plantarum bacteria in the inflamed colon were mostly located in the lumen and (in less inflamed areas) within the mucus layer. In more intensely inflamed areas (i.e., where the colon had undergone structural damage), the L. plantarum were in direct contact with damaged epithelial cells. Taken as a whole, our results show that fluorescently labeled L. plantarum can be used to study the persistence of these bacteria in inflamed guts using both noninvasive whole-body imaging and ex vivo fluorescence confocal microscopy.


Assuntos
Colite/microbiologia , Colo/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Lactobacillus plantarum/fisiologia , Animais , Feminino , Fluorescência , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Microscopia de Fluorescência , Probióticos
20.
Microorganisms ; 9(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34576719

RESUMO

The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn's disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain's clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains' ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC's virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans' lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA