Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 813: 151878, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34826464

RESUMO

The SEAFLOWER Biosphere Reserve (SBR) is the largest Marine Protected Area in the Caribbean Sea and the second largest in Latin America. Marine protected areas are under pressure from various stressors, one of the most important issues being pollution by marine litter, especially plastic. In this study our aim is to establish the distribution pattern and potential sources of solid waste in the different marine/coastal ecosystems of the islands of Providencia and Santa Catalina (SBR), as well as assess any interconnections between these ecosystems. At the same time, the distribution characteristics of marine litter in the different compartments facilitated a more dynamic understanding of the load of marine litter supplied by the islands, both locally and externally. We observed that certain ecosystems, principally back-beach vegetation and mangroves, act as crucial marine litter accumulation zones. Mangroves are important hotspots for plastic accumulation, with densities above eight items/m2 (minimum 8.38 and maximum 10.38 items/m2), while back-beach vegetation (minimum 1.43 and maximum 7.03 items/m2) also removes and stores a portion of the marine litter that arrives on the beaches. Tourist beaches for recreational activities have a low density of marine litter (minimum 0.01 and maximum 0.72 items/m2) due to regular clean-ups, whereas around non-tourist beaches, there is a greater variety of sources and accumulation (minimum 0.31 and maximum 5.41 items/m2). The low density of marine litter found on corals around the island (0-0.02 items/m2) indicates that there is still no significant marine litter stream to the coral reefs. Identifying contamination levels in terms of marine litter and possible flows between ecosystems is critical for adopting management and reduction strategies for such residues.


Assuntos
Praias , Resíduos , Colômbia , Ecossistema , Monitoramento Ambiental , Plásticos , Providencia , Resíduos Sólidos , Resíduos/análise
2.
Mar Pollut Bull ; 169: 112542, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052588

RESUMO

Unmanned aerial systems (UAS, aka drones) are being used to map macro-litter on the environment. Sixteen qualified researchers (operators), with different expertise and nationalities, were invited to identify, mark and categorize the litter items (manual image screening, MS) on three UAS images collected at two beaches. The coefficient of concordance (W) among operators varied between 0.5 and 0.7, depending on the litter parameter (type, material and colour) considered. Highest agreement was obtained for the type of items marked on the highest resolution image, among experts in litter surveys (W = 0.86), and within territorial subgroups (W = 0.85). Therefore, for a detailed categorization of litter on the environment, the MS should be performed by experienced and local operators, familiar with the most common type of litter present in the target area. This work provides insights for future operational improvements and optimizations of UAS-based images analysis to survey environmental pollution.


Assuntos
Praias , Resíduos , Monitoramento Ambiental , Poluição Ambiental/análise , Processamento de Imagem Assistida por Computador , Plásticos , Resíduos/análise
3.
Sci Total Environ ; 749: 141474, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32846347

RESUMO

This work shows an integrated approach for coastal environmental monitoring, which aimed to understand the relation between beach-dune morphodynamics, marine litter abundance and environmental forcing. Three unmanned aerial system (UAS) flights were deployed on a beach-dune system at the Atlantic Portuguese coast to assess two main goals: (i) quantifying the morphological changes that occurred among flights, with focus on dune erosion, and (ii) mapping the changes of marine macro-litter abundance on the shore. Two most vulnerable-to-erosion sectors of the beach were identified. In the northern sector, the groin affected the downdrift shoreline, with dune erosion of about 1 m. In the central part of the beach, the dunes recessed about 4 m during the winter, being more exposed to environmental forcing due to the absence of dune vegetation. Marine litter occupation area on the beach decreased from 25% to 20% over the winter, with octopus pots (13%) and fragments (69%) being the most abundant items on average. Litter distribution varied in relation to swash elevation, wind speed and direction. With low swash elevation, the wind played a predominant role in moving the stranded items northwards, whereas high swash elevation concentrated the items at the dune foot. This study emphasizes the potential of UAS in allowing an integrated approach for coastal erosion monitoring and marine litter mapping, and set the ground for marine litter dynamic modelling on the shore.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA