Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nat Chem Biol ; 18(5): 511-519, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289328

RESUMO

Cone snail venoms contain a wide variety of bioactive peptides, including insulin-like molecules with distinct structural features, binding modes and biochemical properties. Here, we report an active humanized cone snail venom insulin with an elongated A chain and a truncated B chain, and use cryo-electron microscopy (cryo-EM) and protein engineering to elucidate its interactions with the human insulin receptor (IR) ectodomain. We reveal how an extended A chain can compensate for deletion of B-chain residues, which are essential for activity of human insulin but also compromise therapeutic utility by delaying dissolution from the site of subcutaneous injection. This finding suggests approaches to developing improved therapeutic insulins. Curiously, the receptor displays a continuum of conformations from the symmetric state to a highly asymmetric low-abundance structure that displays coordination of a single humanized venom insulin using elements from both of the previously characterized site 1 and site 2 interactions.


Assuntos
Insulina , Venenos de Moluscos , Microscopia Crioeletrônica , Humanos , Insulina/metabolismo , Venenos de Moluscos/química , Venenos de Moluscos/metabolismo , Peptídeos , Conformação Proteica
2.
Proteins ; 90(9): 1732-1743, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35443068

RESUMO

Functional regulation via conformational dynamics is well known in structured proteins but less well characterized in intrinsically disordered proteins and their complexes. Using NMR spectroscopy, we have identified a dynamic regulatory mechanism in the human insulin-like growth factor (IGF) system involving the central, intrinsically disordered linker domain of human IGF-binding protein-2 (hIGFBP2). The bioavailability of IGFs is regulated by the proteolysis of IGF-binding proteins. In the case of hIGFBP2, the linker domain (L-hIGFBP2) retains its intrinsic disorder upon binding IGF-1, but its dynamics are significantly altered, both in the IGF binding region and distantly located protease cleavage sites. The increase in flexibility of the linker domain upon IGF-1 binding may explain the IGF-dependent modulation of proteolysis of IGFBP2 in this domain. As IGF homeostasis is important for cell growth and function, and its dysregulation is a key contributor to several cancers, our findings open up new avenues for the design of IGFBP analogs inhibiting IGF-dependent tumors.


Assuntos
Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina , Fator de Crescimento Insulin-Like I , Proteínas Intrinsicamente Desordenadas , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Peptídeo Hidrolases/metabolismo , Ligação Proteica
3.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164375

RESUMO

In peptide production, oxidative sulfitolysis can be used to protect the cysteine residues during purification, and the introduction of a negative charge aids solubility. Subsequent controlled reduction aids in ensuring correct disulfide bridging. In vivo, these problems are overcome through interaction with chaperones. Here, a versatile peptide production process has been developed using an angled vortex fluidic device (VFD), which expands the viable pH range of oxidative sulfitolysis from pH 10.5 under batch conditions, to full conversion within 20 min at pH 9-10.5 utilising the VFD. VFD processing gave 10-fold greater conversion than using traditional batch processing, which has potential in many applications of the sulfitolysis reaction.


Assuntos
Cisteína/química , Dissulfetos/química , Microfluídica/instrumentação , Microfluídica/métodos , Ocitocina/química , Sulfitos/química , Oxirredução
4.
Bioconjug Chem ; 32(10): 2148-2153, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34494823

RESUMO

The current commercially available glucagon formulations for the treatment of severe hypoglycemia must be reconstituted immediately prior to use, owing to the susceptibility of glucagon to fibrillation and aggregation in an aqueous solution. This results in the inconvenience of handling, misuse, and wastage of this drug. To address these issues, we synthesized a glycosylated glucagon analogue in which the 25th residue (Trp) was replaced with a cysteine (Cys) and a Br-disialyloligosaccharide was conjugated at the Cys thiol moiety. The resulting analogue, glycoglucagon, is a highly potent full agonist at the glucagon receptor. Importantly, glycoglucagon exhibits markedly reduced propensity for fibrillation and enhanced thermal and metabolic stability. This novel analogue is thus a valuable lead for producing stable liquid glucagon formulations that will improve patient compliance and minimize wastage.


Assuntos
Glucagon , Hipoglicemia , Cisteína , Humanos
5.
J Am Chem Soc ; 142(3): 1164-1169, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31850747

RESUMO

Glycosylation is an accepted strategy to improve the therapeutic value of peptide and protein drugs. Insulin and its analogues are life-saving drugs for all type I and 30% of type II diabetic patients. However, they can readily form fibrils which is a significant problem especially for their use in insulin pumps. Because of the solubilizing and hydration effects of sugars, it was thought that glycosylation of insulin could inhibit fibril formation and lead to a more stable formulation. Since enzymatic glycosylation results in heterogeneous products, we developed a novel chemical strategy to produce a homogeneous glycoinsulin (disialo-glycoinsulin) in excellent yield (∼60%). It showed a near-native binding affinity for insulin receptors A and B in vitro and high glucose-lowering effects in vivo, irrespective of the route of administration (s.c. vs i.p.). The glycoinsulin retained insulin-like helical structure and exhibited improved stability in human serum. Importantly, our disialo-glycoinsulin analogue does not form fibrils at both high concentration and temperature. Therefore, it is an excellent candidate for clinical use in insulin pumps.


Assuntos
Glucose/química , Insulina/síntese química , Glicosilação , Humanos , Insulina/química , Microscopia de Força Atômica
6.
J Biol Chem ; 293(30): 11928-11943, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29899115

RESUMO

The development of fast-acting and highly stable insulin analogues is challenging. Insulin undergoes structural transitions essential for binding and activation of the insulin receptor (IR), but these conformational changes can also affect insulin stability. Previously, we substituted the insulin A6-A11 cystine with a rigid, non-reducible C=C linkage ("dicarba" linkage). A cis-alkene permitted the conformational flexibility of the A-chain N-terminal helix necessary for high-affinity IR binding, resulting in surprisingly rapid activity in vivo Here, we show that, unlike the rapidly acting LysB28ProB29 insulin analogue (KP insulin), cis-dicarba insulin is not inherently monomeric. We also show that cis-dicarba KP insulin lowers blood glucose levels even more rapidly than KP insulin, suggesting that an inability to oligomerize is not responsible for the observed rapid activity onset of cis-dicarba analogues. Although rapid-acting, neither dicarba species is stable, as assessed by fibrillation and thermodynamics assays. MALDI analyses and molecular dynamics simulations of cis-dicarba insulin revealed a previously unidentified role of the A6-A11 linkage in insulin conformational dynamics. By controlling the conformational flexibility of the insulin B-chain helix, this linkage affects overall insulin structural stability. This effect is independent of its regulation of the A-chain N-terminal helix flexibility necessary for IR engagement. We conclude that high-affinity IR binding, rapid in vivo activity, and insulin stability can be regulated by the specific conformational arrangement of the A6-A11 linkage. This detailed understanding of insulin's structural dynamics may aid in the future design of rapid-acting insulin analogues with improved stability.


Assuntos
Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Insulina/análogos & derivados , Insulina/farmacologia , Animais , Glicemia/metabolismo , Linhagem Celular , Cristalografia por Raios X , Cisteína/química , Cisteína/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Células NIH 3T3 , Conformação Proteica , Estabilidade Proteica , Receptor de Insulina/metabolismo , Termodinâmica
7.
Angew Chem Int Ed Engl ; 55(47): 14743-14747, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27761974

RESUMO

Despite recent advances in the treatment of diabetes mellitus, storage of insulin formulations at 4 °C is still necessary to minimize chemical degradation. This is problematic in tropical regions where reliable refrigeration is not ubiquitous. Some degradation byproducts are caused by disulfide shuffling of cystine that leads to covalently bonded oligomers. Consequently we examined the utility of the non-reducible cystine isostere, cystathionine, within the A-chain. Reported herein is an efficient method for forming this mimic using simple monomeric building blocks. The intra-A-chain cystathionine insulin analogue was obtained in good overall yield, chemically characterized and demonstrated to possess native binding affinity for the insulin receptor isoform B. It was also shown to possess significantly enhanced thermal stability indicating potential application to next-generation insulin analogues.


Assuntos
Cistationina/síntese química , Insulina/química , Temperatura , Cistationina/química , Humanos , Insulina/análogos & derivados , Conformação Molecular
8.
J Biol Chem ; 289(8): 4626-33, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24398690

RESUMO

The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R.


Assuntos
Fator de Crescimento Insulin-Like II/análogos & derivados , Fator de Crescimento Insulin-Like II/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptor de Insulina/metabolismo , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Proteína 2 Inibidora de Diferenciação/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Receptor IGF Tipo 2/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
9.
J Anat ; 226(4): 373-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25682842

RESUMO

Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. ß-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and ß-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or ß-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution.


Assuntos
Ilhotas Pancreáticas/anatomia & histologia , Ornitorrinco/anatomia & histologia , Tachyglossidae/anatomia & histologia , Animais , Evolução Biológica , Células Endócrinas/citologia , Imuno-Histoquímica , Ilhotas Pancreáticas/citologia , Filogenia
10.
Chemistry ; 20(31): 9549-52, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24957739

RESUMO

Chemical synthesis of peptides can allow the option of sequential formation of multiple cysteines through exploitation of judiciously chosen regioselective thiol-protecting groups. We report the use of 2-nitroveratryl (oNv) as a new orthogonal group that can be cleaved by photolysis under ambient conditions. In combination with complementary S-pyridinesulfenyl activation, disulfide bonds are formed rapidly in situ. The preparation of Fmoc-Cys(oNv)-OH is described together with its use for the solid-phase synthesis of complex cystine-rich peptides, such as insulin.


Assuntos
Dissulfetos/síntese química , Insulina/síntese química , Nitrocompostos/química , Peptídeos/síntese química , Compostos de Sulfidrila/química , Cisteína/química , Dissulfetos/química , Peptídeos/química
11.
Trends Biochem Sci ; 34(12): 612-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19796953

RESUMO

Insulin-like growth factor-II (IGF-II) is a key regulator of cell growth, survival, migration and differentiation. Its pivotal role in these processes requires tight regulation of both expression and activity. The type 1 IGF receptor tyrosine kinase (IGF-1R) mediates IGF-II actions, and a family of six high affinity IGF binding proteins (IGFBPs) regulates IGF-II circulating half-life and its availability to bind IGF-1R. In addition, the type 2 IGF receptor (IGF2R; also called the cation-independent mannose-6-phosphate receptor) modulates the circulating and tissue levels of IGF-II by targeting it to lysosomes for degradation. The recently elucidated crystal structure of IGF-II-IGF2R complex provides new insight into IGF-II regulation, and reveals a common binding surface on IGF-II for the regulatory proteins, IGF2R and the IGFBPs.


Assuntos
Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/metabolismo , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/metabolismo , Animais , Sítios de Ligação , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
Proteome Sci ; 11(1): 4, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23320409

RESUMO

BACKGROUND: Cancer cell migration is fundamentally required for breast tumour invasion and metastasis. The insulin-like growth factor 1 tyrosine kinase receptor (IGF-1R) and the chemokine G-protein coupled receptor, CXCR4 have been shown to play an important role in breast cancer metastasis. Our previous study has shown that IGF-1R can transactivate CXCR4 via a physical association in the human MDA-MB-231 metastatic breast cancer cell line and that this plays a key role in IGF-I-induced migration of these cells. In the present study we used pharmacological inhibition and RNAi to identify PI3Kγ as an important migration signalling molecule downstream of receptor transactivation in MDA-MB-231 cells. To identify PI3Kγ-regulated proteins upon transactivation of CXCR4 by IGF-I, we undertook a comparative proteomics approach using 2-D- Fluorescence Difference Gel Electrophoresis (DIGE) and identified the proteins by mass spectrometry. RESULTS: These experiments identified eukaryotic elongation factor 2 (eEF2) as a novel downstream target of PI3Kγ after activation of the IGF-1R-CXCR4 heterodimer by IGF-I. Further analysis demonstrated that eEF2 is phosphorylated in MDA-MB-231 cells in response to IGF-I and that this is dependent on PI3Kγ activity. CONCLUSIONS: Our data imply a novel role for PI3Kγ in facilitating cell migration by regulating phosphorylation of eEF2.

13.
Gen Comp Endocrinol ; 191: 74-82, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23770219

RESUMO

Ghrelin is a growth hormone (GH)-releasing and appetite-regulating peptide predominately released from the stomach. Ghrelin is evolutionarily highly conserved and known to have a wide range of functions including the regulation of metabolism by maintaining an insulin-glucose balance. The peptide is produced as a single proprotein, which is later proteolytically cleaved. Ghrelin exerts its biological function after O-n-octanoylation at residue serine 3, which is catalyzed by ghrelin O-acyl transferase (GOAT) and allows binding to the growth hormone secretagogue receptor (GHS-R 1a). Genes involved in the ghrelin pathway have been identified in a broad range of vertebrate species, however, little is known about this pathway in the basal mammalian lineage of monotremes (platypus and echidna). Monotremes are particularly interesting in this context, as they have undergone massive changes in stomach anatomy and physiology, accompanied by a striking loss of genes involved in gastric function. In this study, we investigated genes in the ghrelin pathway in monotremes. Using degenerate PCR, database searches and synteny analysis we found that genes encoding ghrelin and GOAT are missing in the platypus genome, whilst, as has been reported in other species, the GHSR is present and expressed in brain, pancreas, kidney, intestine, heart and stomach. This is the first report suggesting the loss of ghrelin in a mammal. The loss of this gene may be related to changes to the platypus digestive system and raises questions about the control of blood glucose levels and insulin response in monotreme mammals. In addition, the conservation of the ghrelin receptor gene in platypus indicates that another ligand(s) maybe acting via this receptor in monotremes.


Assuntos
Aciltransferases/metabolismo , Grelina/metabolismo , Receptores de Grelina/metabolismo , Aciltransferases/genética , Animais , Encéfalo/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Intestinal/metabolismo , Rim/metabolismo , Pâncreas/metabolismo , Ornitorrinco/genética , Ornitorrinco/metabolismo , Reação em Cadeia da Polimerase , Receptores de Grelina/genética
14.
Vitam Horm ; 123: 151-185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717984

RESUMO

Insulin is a peptide hormone essential for maintaining normal blood glucose levels. Individuals unable to secrete sufficient insulin or not able to respond properly to insulin develop diabetes. Since the discovery of insulin its structure and function has been intensively studied with the aim to develop effective diabetes treatments. The three-dimensional crystal structure of this 51 amino acid peptide paved the way for discoveries, outlined in this review, of determinants important for receptor binding and hormone stability that have been instrumental in development of insulin analogs used in the clinic today. Important for the future development of effective diabetes treatments will be a detailed understanding of the insulin receptor structure and function. Determination of the three-dimensional structure of the insulin receptor, a receptor tyrosine kinase, proved challenging but with the recent advent of high-resolution cryo-electron microscopy significant progress has been made. There are now >40 structures of the insulin:insulin receptor complex deposited in the Protein Data Bank. From these structures we have a detailed picture of how insulin binds and activates the receptor. Still lacking are details of the initial binding events and the exact sequence of structural changes within the receptor and insulin. In this review, the focus will be on the most recent structural studies of insulin:insulin receptor complexes and how they have contributed to the current understanding of insulin receptor activation and signaling outcome. Molecular mechanisms underlying insulin receptor signaling bias emerging from the latest structures are described.


Assuntos
Insulina , Receptor de Insulina , Humanos , Microscopia Crioeletrônica , Membrana Celular , Bases de Dados de Proteínas
15.
Cells ; 12(7)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37048081

RESUMO

The discovery of the insulin hormone over 100 years ago, and its subsequent therapeutic application, marked a key landmark in the history of medicine and medical research. The many roles insulin plays in cell metabolism and growth have been revealed by extensive investigations into the structure and function of insulin, the insulin tyrosine kinase receptor (IR), as well as the signalling cascades, which occur upon insulin binding to the IR. In this review, the insulin gene mutations identified as causing disease and the structural implications of these mutations will be discussed. Over 100 studies were evaluated by one reviewing author, and over 70 insulin gene mutations were identified. Mutations may impair insulin gene transcription and translation, preproinsulin trafficking and proinsulin sorting, or insulin-IR interactions. A better understanding of insulin gene mutations and the resultant pathophysiology can give essential insight into the molecular mechanisms underlying impaired insulin biosynthesis and insulin-IR interaction.


Assuntos
Células Secretoras de Insulina , Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Mutação , Proinsulina/genética , Proinsulina/metabolismo , Transporte Proteico , Insulina/genética
16.
ACS Omega ; 8(15): 13715-13720, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091377

RESUMO

Commercially available insulins are manufactured by recombinant methods for the treatment of diabetes. Long-acting insulin drugs (e.g., detemir and degludec) are obtained by fatty acid conjugation at LysB29 ε-amine of insulin via acid-amide coupling. There are three amine groups in insulin, and they all react with fatty acids in alkaline conditions. Due to the lack of selectivity, such conjugation reactions produce non-desired byproducts. We designed and chemically synthesized a novel thiol-insulin scaffold (CysB29-insulin II), by replacing the LysB29 residue in insulin with the CysB29 residue. Then, we conjugated a fatty acid moiety (palmitic acid, C16) to CysB29-insulin II by a highly efficient and selective thiol-maleimide conjugation reaction. We obtained the target peptide (palmitoyl-insulin) rapidly within 5 min without significant byproducts. The palmitoyl-insulin is shown to be structurally similar to insulin and biologically active both in vitro and in vivo. Importantly, unlike native insulin, palmitoyl-insulin is slow and long-acting.

17.
EMBO J ; 27(1): 265-76, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18046459

RESUMO

Embryonic development and normal growth require exquisite control of insulin-like growth factors (IGFs). In mammals the extracellular region of the cation-independent mannose-6-phosphate receptor has gained an IGF-II-binding function and is termed type II IGF receptor (IGF2R). IGF2R sequesters IGF-II; imbalances occur in cancers and IGF2R is implicated in tumour suppression. We report crystal structures of IGF2R domains 11-12, 11-12-13-14 and domains 11-12-13/IGF-II complex. A distinctive juxtaposition of these domains provides the IGF-II-binding unit, with domain 11 directly interacting with IGF-II and domain 13 modulating binding site flexibility. Our complex shows that Phe19 and Leu53 of IGF-II lock into a hydrophobic pocket unique to domain 11 of mammalian IGF2Rs. Mutagenesis analyses confirm this IGF-II 'binding-hotspot', revealing that IGF-binding proteins and IGF2R have converged on the same high-affinity site.


Assuntos
Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/fisiologia , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/fisiologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Cristalografia por Raios X , Humanos , Fator de Crescimento Insulin-Like II/genética , Mutagênese , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Receptor IGF Tipo 2/genética , Relação Estrutura-Atividade
18.
Sci Rep ; 12(1): 4695, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304516

RESUMO

Insulin like growth factor II (IGF-II) is involved in metabolic and mitogenic signalling in mammalian cells and plays important roles in normal fetal development and postnatal growth. It is structurally similar to insulin and binds not only with high affinity to the type 1 insulin-like growth factor receptor (IGF-1R) but also to the insulin receptor isoform A (IR-A). As IGF-II expression is commonly upregulated in cancer and its signalling promotes cancer cell survival, an antagonist that blocks IGF-II action without perturbing insulin signalling would be invaluable. The high degree of structural homology between the IR and IGF-1R makes selectively targeting either receptor in the treatment of IGF-II-dependent cancers very challenging. However, there are sequence differences between insulin and IGF-II that convey receptor selectivity and influence binding affinity and signalling outcome. Insulin residue YB16 is a key residue involved in maintaining insulin stability, dimer formation and IR binding. Mutation of this residue to glutamine (as found in IGF-II) results in reduced binding affinity. In this study we sought to determine if the equivalent residue Q18 in IGF-II plays a similar role. We show through site-directed mutagenesis of Q18 that this residue contributes to IGF-II structural integrity, selectivity of IGF-1R/IR binding, but surprisingly does not influence IR-A signalling activation. These findings provide insights into a unique IGF-II residue that can influence receptor binding specificity whilst having little influence on signalling outcome.


Assuntos
Fator de Crescimento Insulin-Like II , Neoplasias , Animais , Feminino , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Mamíferos/metabolismo , Neoplasias/metabolismo , Gravidez , Ligação Proteica , Isoformas de Proteínas/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo
19.
Front Endocrinol (Lausanne) ; 13: 907864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832429

RESUMO

The mechanisms by which insulin activates the insulin receptor to promote metabolic processes and cellular growth are still not clear. Significant advances have been gained from recent structural studies in understanding how insulin binds to its receptor. However, the way in which specific interactions lead to either metabolic or mitogenic signalling remains unknown. Currently there are only a few examples of insulin receptor agonists that have biased signalling properties. Here we use novel insulin analogues that differ only in the chemical composition at the A6-A11 bond, as it has been changed to a rigid, non-reducible C=C linkage (dicarba bond), to reveal mechanisms underlying signaling bias. We show that introduction of an A6-A11 cis-dicarba bond into either native insulin or the basal/long acting insulin glargine results in biased signalling analogues with low mitogenic potency. This can be attributed to reduced insulin receptor activation that prevents effective receptor internalization and mitogenic signalling. Insight gained into the receptor interactions affected by insertion of an A6-A11 cis-dicarba bond will ultimately assist in the development of new insulin analogues for the treatment of diabetes that confer low mitogenic activity and therefore pose minimal risk of promoting cancer with long term use.


Assuntos
Insulina , Receptor de Insulina , Dissulfetos , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Mitógenos/metabolismo , Mitógenos/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo
20.
Structure ; 30(8): 1098-1108.e6, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660159

RESUMO

Monomers of the insulin receptor and type 1 insulin-like growth factor receptor (IGF-1R) can combine stochastically to form heterodimeric hybrid receptors. These hybrid receptors display ligand binding and signaling properties that differ from those of the homodimeric receptors. Here, we describe the cryoelectron microscopy structure of such a hybrid receptor in complex with insulin-like growth factor I (IGF-I). The structure (ca. 3.7 Å resolution) displays a single IGF-I ligand, bound in a similar fashion to that seen for IGFs in complex with IGF-1R. The IGF-I ligand engages the first leucine-rich-repeat domain and cysteine-rich region of the IGF-1R monomer (rather than those of the insulin receptor monomer), consistent with the determinants for IGF binding residing in the IGF-1R cysteine-rich region. The structure broadens our understanding of this receptor family and assists in delineating the key structural motifs involved in binding their respective ligands.


Assuntos
Fator de Crescimento Insulin-Like I , Receptor de Insulina , Microscopia Crioeletrônica , Cisteína , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptores de Somatomedina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA