Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Virus Evol ; 10(1): vead079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361817

RESUMO

Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and-most importantly-hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.

2.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20210063, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34538135

RESUMO

Networks of species interactions underpin numerous ecosystem processes, but comprehensively sampling these interactions is difficult. Interactions intrinsically vary across space and time, and given the number of species that compose ecological communities, it can be tough to distinguish between a true negative (where two species never interact) from a false negative (where two species have not been observed interacting even though they actually do). Assessing the likelihood of interactions between species is an imperative for several fields of ecology. This means that to predict interactions between species-and to describe the structure, variation, and change of the ecological networks they form-we need to rely on modelling tools. Here, we provide a proof-of-concept, where we show how a simple neural network model makes accurate predictions about species interactions given limited data. We then assess the challenges and opportunities associated with improving interaction predictions, and provide a conceptual roadmap forward towards predictive models of ecological networks that is explicitly spatial and temporal. We conclude with a brief primer on the relevant methods and tools needed to start building these models, which we hope will guide this research programme forward. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Assuntos
Biota , Interações Hospedeiro-Parasita , Modelos Biológicos , Redes Neurais de Computação , Análise Espaço-Temporal
3.
Sci Rep ; 9(1): 15747, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673120

RESUMO

Canine distemper virus (CDV) is the cause of a multisystem disease in domestic dogs and wild animals, infecting more than 20 carnivore and non-carnivore families and even infecting human cell lines in in vitro conditions. Phylogenetic classification based on the hemagglutinin gene shows 17 lineages with a phylogeographic distribution pattern. In Medellín (Colombia), the lineage South America-3 is considered endemic. Phylogenetic studies conducted in Ecuador using fragment coding for the fusion protein signal peptide (Fsp) characterized a new strain belonging to a different lineage. For understanding the distribution of the South America-3 lineage in the north of the South American continent, we characterized CDV from three Colombian cities (Medellín, Bucaramanga, and Bogotá). Using phylogenetic analysis of the hemagglutinin gene and the Fsp region, we confirmed the circulation of CDV South America-3 in different areas of Colombia. We also described, for the first time to our knowledge, the circulation of a new lineage in Medellín that presents a group monophyletic with strains previously characterized in dogs in Ecuador and in wildlife and domestic dogs in the United States, for which we propose the name "South America/North America-4" due its intercontinental distribution. In conclusion, our results indicated that there are at least four different CDV lineages circulating in domestic dogs in South America: the Europe/South America-1 lineage circulating in Brazil, Uruguay, and Argentina; the South America-2 lineage restricted to Argentina; the South America-3 lineage, which has only been reported in Colombia; and lastly an intercontinental lineage present in Colombia, Ecuador, and the United States, referred to here as the "South America/North America-4" lineage.


Assuntos
Vírus da Cinomose Canina/genética , Ligação Genética , Animais , Teorema de Bayes , Vírus da Cinomose Canina/classificação , Cães , Feminino , Glicopeptídeos/classificação , Glicopeptídeos/genética , Hemaglutininas Virais/classificação , Hemaglutininas Virais/genética , Masculino , América do Norte , Filogenia , Filogeografia , RNA Viral/química , RNA Viral/metabolismo , Análise de Sequência de RNA , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA