RESUMO
Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding. The mechanisms involved in the emissions have been disclosed thanks to combined structural, spectroscopic and computational investigations. In particular, strong CHâ¯N hydrogen bonds are deemed responsible, for the first time in the TT family, together with frequently observed πâ¯π stacking interactions, for the aggregated fluorescence and phosphorescence.
RESUMO
Stimuli responsive luminescent materials possessing room temperature phosphorescence (RTP) are extremely desirable for various applications. The here investigated derivative of cyclic triimidazole (TT) functionalized with carbazole (Cz), namely TT-Ph-Cz, belongs to this class. TT-Ph-Cz possesses high conformational freedom resulting in rigidochromic and multi-stimuli responsive emissive behavior. It has been isolated as MeOH-solvated and de-solvated forms characterized by distinctive emissive features. In particular, the solvated form, in which hydrogen bonds with MeOH inhibit competitive non-radiative deactivation channels, possesses a higher quantum yield associated with a strong phosphorescence contribution which is preserved in DMSO/water solutions.
Assuntos
Carbazóis , Luminescência , Ligação de HidrogênioRESUMO
The tetranuclear iron(III) compounds [Fe4(µ3-O)2(µ-LZ)4] (1-3) were obtained by reaction of FeCl3 with the shortened salen-type N2O2 tetradentate Schiff bases N,N'-bis(salicylidene)-o-Z-phenylmethanediamine H2LZ (Z = NO2, Cl and OMe, respectively), where the one-carbon bridge between the two iminic nitrogen donor atoms guide preferentially to the formation of oligonuclear species, and the ortho position of the substituent Z on the central phenyl ring selectively drives towards Fe4 bis-oxido clusters. All compounds show a flat almost-symmetric butterfly-like conformation of the {Fe4(µ3-O)2} core, surrounded by the four Schiff base ligands, as depicted by both the X-ray molecular structures of 1 and 2 and the optimized geometries of all derivatives as obtained by UM06/6-311G(d) DFT calculations. The strength of the antiferromagnetic exchange coupling constants between the iron(III) ions varies among the three derivatives, despite their magnetic cores remain structurally almost unvaried, as well as the coordination of the metal ions, with a distorted octahedral environment for the two-body iron ions, Feb, and a pentacoordination with trigonal bipyramidal geometry for the two-wing iron ions, Few. The different magnetic behavior within the series of examined compounds may be ascribed to the influence of the electronic features of Z on the electron density distribution (EDD) of the central {Fe4(µ3-O)2} core, substantiated by a Quantum Theory of Atoms In Molecules (QTAIM) topological analysis of the EDD, as obtained by UM06 calculations 1-3.
Assuntos
Ferro , Ferro/química , Estrutura Molecular , Conformação Molecular , Íons/química , Cristalografia por Raios XRESUMO
The development of organic room-temperature phosphorescent (ORTP) materials represents an active field of research due to their significant advantages with respect to their organometallic counterparts. Two cyclic triimidazole (TT) derivatives bearing one and three hexyl-thiophene moieties, TT-HThio and TT-(HThio)3, have been prepared and characterized. Both compounds display enhanced quantum yields in their crystalline form with respect to those in a solution state, revealing crystallization-enhanced emissive (CEE) behavior. Importantly, while single fluorescence is observed in solution, crystalline powders also feature dual ORTP, whose respective molecular and aggregate origins have been disclosed through X-ray diffraction analysis and DFT/TDDFT calculations. The relation between the photophysical properties of TT-HThio and its crystallinity degree has been confirmed by a decrease in photoluminescent quantum yield (Φ) and loss of vibronic resolution when its crystals are ground in a mortar, revealing mechanochromic behavior and confirming CEE features.
RESUMO
Organic materials with multiple emissions tunable by external stimuli represent a great challenge. TTPyr, crystallizing in different polymorphs, shows a very rich photophyisics comprising excitation-dependent fluorescence and phosphorescence at ambient conditions, and mechanochromic and thermochromic behavior. Transformation among the different species has been followed by thermal and X-ray diffraction analyses and the emissive features interpreted through structural results and DFT/TDDFT calculations. Particularly intriguing is the polymorph TTPyr(HT), serendipitously obtained at high temperature but stable also at room temperature, whose non-centrosymmetric structure guarantees an SHG efficiency 10 times higher than that of standard urea. Its crystal packing, where only the TT units are strongly rigidified by π-π stacking interactions while the Pyr moieties possess partial conformational freedom, is responsible for the observed dual fluorescence. The potentialities of TTPyr for bioimaging have been successfully established.
Assuntos
Luminescência , Pirenos , Cristalografia por Raios X , Conformação Molecular , TemperaturaRESUMO
Anti-Kasha behavior has been the subject of intense debate in the last few years, as demonstrated by the high number of papers appearing in the literature on this topic, dealing with both mechanistic and applicative aspects of this phenomenon. Examples of anomalous emitters reported in the last 10 years are collected in the present review, which is focused on strictly anti-Kasha organic molecules displaying radiative deactivation from Sn and/or Tn, with n greater than 1.
RESUMO
The concept of orthogonality between halogen and hydrogen bonding, brought out by Ho and coworkers some years ago, has become a widely accepted idea within the chemists' community. While the original work was based on a common carbonyl oxygen as acceptor for both interactions, we explore here, by means of M06-2X, M11, ωB97X, and ωB97XD/aug-cc-PVTZ DFT calculations, the interdependence of halogen and hydrogen bonding with a shared π-electron system of benzene. The donor groups (specifically NCBr and H2O) were placed on either or the same side of the ring, according to a double T-shaped or a perpendicular geometry, respectively. The results demonstrate that the two interactions with benzene are not strictly independent on each other, therefore outlining that the orthogonality between halogen and hydrogen bonding, intended as energetical independence between the two interactions, should be carefully evaluated according to the specific acceptor group.
RESUMO
Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.
RESUMO
In this work, we have prepared a series of A4 ZnII porphyrins, carrying in the ß-pyrrolic-position one or two π-delocalized ethynylphenyl moieties with a -NO2 acceptor or a -NMe2 donor pendant, and measured their second-order NLO response in CHCl3 solution at 1907 nm via the electric-field-induced second harmonic generation (EFISH) technique. For some of these compounds, we have recorded an unexpected sign and/or absolute value of µß1907. Since their sterically hindered A4 structure should ensure the lack of significant aggregation processes in solution, we explain such anomalous EFISH results by invoking a non-negligible contribution of the electronic cubic term γ(-2ω; ω, ω, 0) to γEFISH, as supported by a qualitative evaluation of the third-order response through the measure of the cubic hyperpolarizability (γTHG) and by computational evidence.
RESUMO
Considering that heavy halogen atoms can be used to tune the emissive properties of organic luminogens, the understanding of their role in photophysics is fundamental for materials engineering. Here, the extrinsic and intrinsic heavy-atom effects on the photophysics of organic crystals were separately evaluated by comparing cyclic triimidazole (TT) with its monoiodo derivative (TTI) and its co-crystal with diiodotetrafluorobenzene (TTCo). Crystals of TT showed room-temperature ultralong phosphorescence (RTUP) originated from H-aggregation. TTI and TTCo displayed two additional long-lived components, the origin of which is elucidated through single-crystal X-ray and DFT/TDDFT studies. The results highlight the different effects of the I atom on the three phosphorescent emissions. Intrinsic heavy-atom effects play a major role on molecular phosphorescence, which is displayed at room temperature only for TTI. The H-aggregate RTUP and the Iâ â â N XB-induced (XB=halogen bond) phosphorescence on the other side depend only on packing features.
RESUMO
Two novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with tert-butyl(diphenyl)phosphine (PtBuPh2) and (S)-(+)neomenthyldiphenylphosphine [(S)-NMDPP]. The crystal structure of the former was determined by single-crystal X-ray diffraction studies. The two complexes were then used in combination with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene: crystalline highly syndiotactic 1,2 poly(1,3-butadiene)s were obtained, with a 1,2 content and a syndiotactic index (percentage of syndiotactic triads [rr]) up to 95% and 85%, respectively. The results obtained further support and confirm what was already observed in the polymerization of 1,3-butadiene with CoCl2(PRPh2)2-MAO (R = methyl, ethyl, normal-propyl, iso-propyl, and cyclohexyl): the nature of the phosphine ligand strongly affects the polymerization stereoselectivity, the polymer syndiotacticity increasing with increasing phosphine ligand steric hindrance.
Assuntos
Butadienos/química , Cobalto/química , Complexos de Coordenação/síntese química , Fosfinas/química , Catálise , Complexos de Coordenação/química , Ligantes , Modelos Moleculares , Estrutura Molecular , PolimerizaçãoRESUMO
A stereoselective synthetic strategy for the preparation of trifluoromethylamine mimics of retro-thiorphan, involving a diastereoselective, metal-free catalytic step, has been studied in batch and afforded the target molecule in good yields and high diastereoselectivity. A crucial point of the synthetic sequence was the catalytic reduction of a fluorinated enamine with trichlorosilane as reducing agent in the presence of a chiral Lewis base. The absolute configuration of the key intermediate was unambiguously assigned by X-ray analysis. The synthesis was also investigated exploiting continuous flow reactions; that is, an advanced intermediate of the target molecule was synthesized in only two in-flow synthetic modules, avoiding isolation and purifications of intermediates, leading to the isolation of the target chiral fluorinated amine in up to an 87:13 diastereoisomeric ratio.
Assuntos
Tiorfano/análogos & derivados , Catálise , Halogenação , Modelos Moleculares , Estrutura Molecular , Oxirredução , Estereoisomerismo , Tiorfano/química , Tiorfano/metabolismoRESUMO
Organic room temperature persistent luminescence is a fascinating but still largely unexplored phenomenon. Cyclic-triimidazole and its halogenated (Br, I) derivatives have recently revealed as intriguing phosphors characterized by multifaceted emissive behavior including room temperature ultralong phosphorescence (RTUP) associated with the presence of H-aggregates in their crystal structure. Here, we move towards a multicomponent system by incorporating a fluoropyridinic fragment on the cyclic-triimidazole scaffold. Such chromophore enhances the molecular properties resulting in a high photoluminescence quantum yield (PL QY) in solution but preserves the solid-state RTUP. By means of X-ray diffraction (XRD) analysis, theoretical calculations, steady-state and time-resolved spectroscopy on solutions, polymethylmethacrylate (PMMA) blends and crystals, the nature of the different radiative deactivation channels of the compound has been disclosed. In particular, the molecular fluorescence and phosphorescence, this latter observed in frozen solution and in PMMA blends, are associated to deactivation from S1 and T1 respectively, while the low energy RTUP, observed only for crystals, is interpreted as originated from H aggregates.
Assuntos
Fluorescência , Luminescência , Temperatura , Triazinas/química , Teoria da Densidade Funcional , Análise EspectralRESUMO
We study hyper-Rayleigh scattering and computed molecular hyperpolarizability in a series of azobenzene chromophores in chloroform and dimethylformamide as solvents. The chromophores form halogen or hydrogen bonds of varying strength with dimethylformamide molecules, differently from what is expected for chloroform. We show that hyperpolarizability is unaffected or sligthly lower with the azobenzene forming the strongest halogen bond. Solid supramolecular polymers with the same chromophores have previously demonstrated clearly higher second-order nonlinear responses when a halogen-bond-accepting polymer is used, the larger increase being associated with the stronger halogen bond. The present study proves that the higher optical nonlinearity in polymers lies in the better ordering of the chromophores instead of changes in molecular hyperpolarizability, highlighting the unique properties of halogen bonding in supramolecular chemistry.
RESUMO
We report the design, synthesis, molecular optical properties, and solid state emissive behaviour of a series of novel compounds, which, similar to the archetypal AIE luminogen tetraphenylethene, are formed of a central olefin stator and decorated with either three or four rotors. These rotors, being either electron-rich substituted benzenes, or electron-withdrawing functional groups (esters, ketones, cyano groups) confer a "push-pull" character to the overall molecular structure. Building on both new and already published contributions, a comprehensive picture of the properties and the potential of these compounds is provided.
RESUMO
A series of 5,15 push-pull meso-diarylzinc(II) porphyrinates, carrying one or two -COOH or -COOCH3 acceptor groups and a -OCH3 or a -N(CH3)2 donor group, show in N,N-dimethylformamide and CHCl3 solutions a negative and solvent-dependent second-order nonlinear-optical (NLO) response measured by the electric-field-induced second-harmonic generation (EFISH) technique, different from the structurally related zinc(II) porphyrinate carrying a -N(CH3)2 donor group and a -NO2 acceptor group, where a still solvent-dependent but positive EFISH second-order response was previously reported. Moreover, when a -N(CH3)2 donor group and a -COOH acceptor group are part of a sterically hindered 2,12 push-pull ß-pyrrolic-substituted tetraarylzinc(II) porphyrinate, the EFISH response is positive and solvent-independent. In order to rationalize these rather intriguing series of observations, EFISH measurements have been integrated by electronic absorption and IR spectroscopic investigations and by density functional theory (DFT) and coupled-perturbed DFT theoretical and 1H pulsed-gradient spin-echo NMR investigations, which prompt that the significant concentration effects and the strong influence of the solvent nature on the NLO response are originated by a complex whole of different aggregation processes induced by the -COOH group.
RESUMO
On the way to copper(I) iodide coordination polymers with specific luminescent properties, the in situ reduction of Cu(II) in the presence of KI and bidentate N-heteroatomic ligand, either pyrazine (pyz) or 4,4'-bipyridine (bpy), resulted in one two-dimensional and two three-dimensional new coordination networks. Starting from Cu(NO3)2·3H2O in the presence of pyz, successive precipitation of known yellow [(CuII)2(pyz)]n, new orange [CuII(pyz)]n, and new dark blue {[CuI(pyz)2]·I5}n polymeric solids was observed. Starting from the same salt in the presence of bpy resulted in the successive precipitation of known yellow [(CuII)2(bpy)]n and new brown {[CuII(NO3)(bpy)2]·I3·(dmf·H2O)}n coordination polymers. By using either Cu(CH3COO)2·H2O or Cu(BF4)2 as starting materials, both known forms, yellow [(CuII)2(bpy)]n and orange [CuII(bpy)]n, precipitated successively. The new solids were characterized by IR spectroscopy and X-ray analysis. [CuII(pyz)]n represents the missing member in the row of two-dimensional coordination networks with general formula [CuIX(pyz)]n (X = Cl, Br, I). Its steady state and time-resolved characterization together with DFT and TDDFT calculations revealed that the emission at room temperature is mainly delayed fluorescence originating from mixed singlet metal-to-ligand charge transfer and halide-to-ligand charge transfer states, while that at 77 K is phosphorescence, associated with the small singlet-triplet energy differences (ΔE = 70 meV).
RESUMO
The performance of solid luminogens depends on both their inherent electronic properties and their packing status. Intermolecular interactions have been exploited to achieve persistent room-temperature phosphorescence (RTP) from organic molecules. However, the design of organic materials with bright RTP and the rationalization of the role of interchromophoric electronic coupling remain challenging tasks. Cyclic triimidazole has been shown to be a promising scaffold for such purposes owing to its crystallization-induced room-temperature ultralong phosphorescence (RTUP), which has been associated with H-aggregation. Herein, we report three triimidazole derivatives as significant examples of multifaceted emission. In particular, dual fluorescence, RTUP, and phosphorescence from the molecular and supramolecular units were observed. H-aggregation is responsible for the red RTUP, and Br substituents favor yellow molecular phosphorescence while halogen-bonded Brâ â â Br tetrameric units are involved in the blue-green phosphorescence.
RESUMO
To achieve enantioselective electroanalysis either chiral electrodes or chiral media are needed. High enantiodiscrimination properties can be granted by the "inherent chirality" strategy of developing molecular materials in which the stereogenic element responsible for chirality coincides with the molecular portion responsible for their specific properties, an approach recently yielding outstanding performances as electrode surfaces. Inherently chiral ionic liquids (ICILs) have now been prepared starting from atropisomeric 3,3'-bicollidine, synthesized from inexpensive reagents, resolved into antipodes without need of chiral HPLC and converted into long-chain dialkyl salts with melting points below room temperature. Both the new ICILs and shorter family terms, solid at room temperature, employed as low-concentration additives in achiral ILs, afford impressive enantioselection for the enantiomers of different probes on achiral electrodes, regularly increasing with additive concentration.
RESUMO
Halogen bonding, a noncovalent interaction between a halogen atom and a nucleophilic site, is receiving a growing attention in the chemical community stimulating a large number of theoretical investigations. The density functional theory (DFT) approach revealed to be one of the most suitable methods owing to its accuracy and low computational cost. We report here a detailed analysis of the performance of an extensive set of DFT functionals in reproducing accurate binding energies and topological properties for the halogen-bonding interaction of either NCX or PhX molecules (X = F, Cl, Br, I) with the aromatic system of benzene in the T-shaped configuration. It was found that the better performance for both sets of properties is provided by a small subset of functionals able to take into account, implicitly or explicitly (by inclusion of an additive pairwise potential), the dispersion contribution, that is, ωB97X, M06-2X, M11, mPW2PLYP-D, and B2PLYP-D3.