Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34518866

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has triggered an unprecedented international effort to sequence complete viral genomes. We leveraged this wealth of information to characterize the substitution spectrum of SARS-CoV-2 and to compare it with those of other human and animal coronaviruses. We show that, once nucleotide composition is taken into account, human and most animal coronaviruses display a mutation spectrum dominated by C to U and G to U substitutions, a feature that is not shared by other positive-sense RNA viruses. However, the proportions of C to U and G to U substitutions tend to decrease as divergence increases, suggesting that, whatever their origin, a proportion of these changes is subsequently eliminated by purifying selection. Analysis of the sequence context of C to U substitutions showed little evidence of apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-mediated editing and such contexts were similar for SARS-CoV-2 and Middle East respiratory syndrome coronavirus sampled from different hosts, despite different repertoires of APOBEC3 proteins in distinct species. Conversely, we found evidence that C to U and G to U changes affect CpG dinucleotides at a frequency higher than expected. Whereas this suggests ongoing selective reduction of CpGs, this effect alone cannot account for the substitution spectra. Finally, we show that, during the first months of SARS-CoV-2 pandemic spread, the frequency of both G to U and C to U substitutions increased. Our data suggest that the substitution spectrum of SARS-CoV-2 is determined by an interplay of factors, including intrinsic biases of the replication process, avoidance of CpG dinucleotides and other constraints exerted by the new host.


Assuntos
COVID-19/genética , Evolução Molecular , Genoma Viral , Mutação , Pandemias , SARS-CoV-2/genética , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Animais , COVID-19/epidemiologia , Humanos , Filogenia , SARS-CoV-2/metabolismo
2.
Mol Ecol ; 33(6): e17287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263702

RESUMO

The genomes of cellular organisms display CpG and TpA dinucleotide composition biases. Such biases have been poorly investigated in dsDNA viruses. Here, we show that in dsDNA virus, bacterial, and eukaryotic genomes, the representation of TpA and CpG dinucleotides is strongly dependent on genomic G + C content. Thus, the classical observed/expected ratios do not fully capture dinucleotide biases across genomes. Because a larger portion of the variance in TpA frequency was explained by G + C content, we explored which additional factors drive the distribution of CpG dinucleotides. Using the residuals of the linear regressions as a measure of dinucleotide abundance and ancestral state reconstruction across eukaryotic and prokaryotic virus trees, we identified an important role for phylogeny in driving CpG representation. Nonetheless, phylogenetic ANOVA analyses showed that few host associations also account for significant variations. Among eukaryotic viruses, most significant differences were observed between arthropod-infecting viruses and viruses that infect vertebrates or unicellular organisms. However, an effect of viral DNA methylation status (either driven by the host or by viral-encoded methyltransferases) is also likely. Among prokaryotic viruses, cyanobacteria-infecting phages resulted to be significantly CpG-depleted, whereas phages that infect bacteria in the genera Burkolderia and Staphylococcus were CpG-rich. Comparison with bacterial genomes indicated that this effect is largely driven by the general tendency for phages to resemble the host's genomic CpG content. Notably, such tendency is stronger for temperate than for lytic phages. Our data shed light into the processes that shape virus genome composition and inform manipulation strategies for biotechnological applications.


Assuntos
Genoma Viral , Vírus , Animais , Viés , Metilação de DNA/genética , Genoma Viral/genética , Filogenia , Vírus/genética , Células Procarióticas/química , Células Eucarióticas/química
3.
Curr Top Microbiol Immunol ; 439: 265-303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592249

RESUMO

Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.


Assuntos
Arenaviridae , Animais , Humanos , Arenaviridae/genética , Arenaviridae/metabolismo , Roedores , Variação Genética
4.
J Infect Dis ; 227(6): 742-751, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35831941

RESUMO

BACKGROUND: Monkeypox is an emerging zoonosis endemic to Central and West Africa. Monkeypox virus (MPXV) is genetically structured in 2 major clades (clades 1 and 2/3), but its evolution is poorly explored. METHODS: We retrieved MPXV genomes from public repositories and we analyzed geographic patterns using STRUCTURE. Molecular dating was performed using a using a Bayesian approach. RESULTS: We show that the population transmitted in West Africa (clades 2/3) experienced limited drift. Conversely, clade 1 (transmitted in the Congo Basin) possibly underwent a bottleneck or founder effect. Depending on the model used, we estimated that the 2 clades separated ∼560-860 (highest posterior density: 450-960) years ago, a period characterized by expansions and contractions of rainforest areas, possibly creating the ecological conditions for the MPXV reservoir(s) to migrate. In the Congo Basin, MPXV diversity is characterized by 4 subpopulations that show no geographic structuring. Conversely, clades 2/3 are spatially structured with 2 populations located West and East of the Dahomey Gap. CONCLUSIONS: The distinct histories of the 2 clades may derive from differences in MPXV ecology in West and Central Africa.


Assuntos
Monkeypox virus , Mpox , Animais , Monkeypox virus/genética , Teorema de Bayes , Mpox/epidemiologia , Mpox/genética , África Ocidental , Zoonoses
5.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35731846

RESUMO

Primate herpes simplex viruses are species-specific and relatively harmless to their natural hosts. However, cross-species transmission is often associated with severe disease, as exemplified by the virulence of macacine herpesvirus 1 (B virus) in humans. We performed a genome-wide scan for signals of adaptation of simplexviruses to their hominin hosts. Among core genes, we found evidence of episodic positive selection in three glycoproteins, with several selected sites located in antigenic determinants. Positively selected noncore genes were found to be involved in different immune-escape mechanisms. The herpes simplex virus (HSV)-1/HSV-2 encoded product (ICP47) of one of these genes is known to down-modulate major histocompatibility complex class I expression. This feature is not shared with B virus, which instead up-regulates Human Leukocyte Antigen (HLA)-G, an immunomodulatory molecule. By in vitro expression of different ICP47 mutants, we functionally characterized the selection signals. Results indicated that the selected sites do not represent the sole determinants of binding to the transporter associated with antigen processing (TAP). Conversely, the amino acid status at these sites was sufficient to determine HLA-G up-regulation. In fact, both HSV-1 and HSV-2 ICP47 induced HLA-G when mutated to recapitulate residues in B virus, whereas the mutated version of B virus ICP47 failed to determine HLA-G expression. These differences might contribute to the severity of B virus infection in humans. Importantly, they indicate that the evolution of ICP47 in HSV-1/HSV-2 led to the loss of an immunosuppressive effect. Thus, related simplexviruses finely tune the balance between immunosuppressive and immunostimulatory pathways to promote successful co-existence with their primate hosts.


Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Animais , Apresentação de Antígeno , Antígenos HLA-G , Herpesvirus Humano 1/genética , Herpesvirus Humano 2 , Humanos , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Virais/genética
6.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792576

RESUMO

Poxviruses (family Poxviridae) have long dsDNA genomes and infect a wide range of hosts, including insects, birds, reptiles and mammals. These viruses have substantial incidence, prevalence and disease burden in humans and in other animals. Nucleotide and dinucleotide composition, mostly CpG and TpA, have been largely studied in viral genomes because of their evolutionary and functional implications. We analysed here the nucleotide and dinucleotide composition, as well as codon usage bias, of a set of representative poxvirus genomes, with a very diverse host spectrum. After correcting for overall nucleotide composition, entomopoxviruses displayed low overall GC content, no enrichment in TpA and large variation in CpG enrichment, while chordopoxviruses showed large variation in nucleotide composition, no obvious depletion in CpG and a weak trend for TpA depletion in GC-rich genomes. Overall, intergenome variation in dinucleotide composition in poxviruses is largely accounted for by variation in overall genomic GC levels. Nonetheless, using vaccinia virus as a model, we found that genes expressed at the earliest times in infection are more CpG-depleted than genes expressed at later stages. This observation has parallels in betahepesviruses (also large dsDNA viruses) and suggests an antiviral role for the innate immune system (e.g. via the zinc-finger antiviral protein ZAP) in the early phases of poxvirus infection. We also analysed codon usage bias in poxviruses and we observed that it is mostly determined by genomic GC content, and that stratification after host taxonomy does not contribute to explaining codon usage bias diversity. By analysis of within-species diversity, we show that genomic GC content is the result of mutational biases. Poxvirus genomes that encode a DNA ligase are significantly AT-richer than those that do not, suggesting that DNA repair systems shape mutation biases. Our data shed light on the evolution of poxviruses and inform strategies for their genetic manipulation for therapeutic purposes.


Assuntos
Poxviridae , Animais , Humanos , Poxviridae/genética , Nucleotídeos , Códon/genética , Evolução Molecular , Mamíferos/genética , Fosfatos de Dinucleosídeos , Antivirais
7.
J Med Virol ; 95(2): e28493, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633196

RESUMO

The ongoing outbreak of monkeypox virus (hMPXV1) is the largest recorded in historically nonendemic countries. Genomic surveillance has emerged as a pivotal tool to track the spread and monitor the evolution of viral pathogens. Therefore, to assess the genetic diversity of circulating hMPXV1 in northern Italy in June to July 2022, we sequenced and analyzed five complete genomes of viruses sampled from patients presenting with a typical course of hMPXV1 infection. Phylogenetic analysis confirmed that all five genomes belong to the predominant epidemic lineage (B.1). Inspection of genetic changes and comparison with the reference sequence showed the presence of 12 nucleotide substitutions. Seven are nonsynonymous mutations leading to amino acid changes in six proteins belonging to different functional classes. Moreover, 11 of these 12 nucleotide mutations involve GA>AA or TC>TT replacements, suggesting that host APOBEC3 enzymes are responsible for the generation of substitutions in circulating viruses. Finally, metagenomic analysis evidenced bacterial superinfection (Streptococcus pyogenes) in one patient. Through this study, we contributed to expand the number of complete genomes of viruses circulating in Italy and characterize them as belonging to the predominant outbreak lineage.


Assuntos
Genoma Viral , Nucleotídeos , Humanos , Filogenia , Mutação , Sequenciamento Completo do Genoma
8.
Hum Genet ; 141(11): 1705-1722, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35122525

RESUMO

Type II transmembrane serine proteases (TTSPs) are a family of trypsin-like membrane-anchored serine proteases that play key roles in the regulation of some crucial processes in physiological conditions, including cardiac function, digestion, cellular iron homeostasis, epidermal differentiation, and immune responses. However, some of them, in particular TTSPs expressed in the human airways, were identified as host factors that promote the proteolytic activation and spread of respiratory viruses such as influenza virus, human metapneumovirus, and coronaviruses, including SARS-CoV-2. Given their involvement in viral priming, we hypothesized that members of the TTSP family may represent targets of positive selection, possibly as the result of virus-driven pressure. Thus, we investigated the evolutionary history of sixteen TTSP genes in mammals. Evolutionary analyses indicate that most of the TTSP genes that have a verified role in viral proteolytic activation present signals of pervasive positive selection, suggesting that viral infections represent a selective pressure driving the evolution of these proteases. We also evaluated genetic diversity in human populations and we identified targets of balancing selection in TMPRSS2 and TMPRSS4. This scenario may be the result of an ancestral and still ongoing host-pathogen arms race. Overall, our results provide evolutionary information about candidate functional sites and polymorphic positions in TTSP genes.


Assuntos
COVID-19 , Serina Proteases , Animais , Humanos , Ferro , Mamíferos , Proteínas de Membrana/genética , SARS-CoV-2/genética , Serina Proteases/genética , Tripsina
9.
PLoS Pathog ; 16(5): e1008476, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32384127

RESUMO

Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes.


Assuntos
Adaptação Biológica/genética , Infecções por Citomegalovirus/genética , Citomegalovirus/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/metabolismo , Evolução Molecular , Glicoproteínas/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Filogenia , Especificidade da Espécie , Proteínas Virais/metabolismo
10.
Mol Ecol ; 31(13): 3672-3692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35575901

RESUMO

Coronaviruses (CoVs) have complex genomes that encode a fixed array of structural and nonstructural components, as well as a variety of accessory proteins that differ even among closely related viruses. Accessory proteins often play a role in the suppression of immune responses and may represent virulence factors. Despite their relevance for CoV phenotypic variability, information on accessory proteins is fragmentary. We applied a systematic approach based on homology detection to create a comprehensive catalogue of accessory proteins encoded by CoVs. Our analyses grouped accessory proteins into 379 orthogroups and 12 super-groups. No orthogroup was shared by the four CoV genera and very few were present in all or most viruses in the same genus, reflecting the dynamic evolution of CoV genomes. We observed differences in the distribution of accessory proteins in CoV genera. Alphacoronaviruses harboured the largest diversity of accessory open reading frames (ORFs), deltacoronaviruses the smallest. However, the average number of accessory proteins per genome was highest in betacoronaviruses. Analysis of the evolutionary history of some orthogroups indicated that the different CoV genera adopted similar evolutionary strategies. Thus, alphacoronaviruses and betacoronaviruses acquired phosphodiesterases and spike-like accessory proteins independently, whereas horizontal gene transfer from reoviruses endowed betacoronaviruses and deltacoronaviruses with fusion-associated small transmembrane (FAST) proteins. Finally, analysis of accessory ORFs in annotated CoV genomes indicated ambiguity in their naming. This complicates cross-communication among researchers and hinders automated searches of large data sets (e.g., PubMed, GenBank). We suggest that orthogroup membership is used together with a naming system to provide information on protein function.


Assuntos
Coronavirus , Sequência de Aminoácidos , Coronavirus/química , Coronavirus/genética , Evolução Molecular , Genoma Viral/genética , Fases de Leitura Aberta/genética
11.
Immunity ; 38(6): 1129-41, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23707475

RESUMO

T cell activation plays a central role in immune response and in the maintenance of self-tolerance. We analyzed the evolutionary history of T cell regulatory molecules. Nine genes involved in triggering T cell activation or in regulating the ensuing response evolved adaptively in mammals. Several positively selected sites overlap with positions interacting with the binding partner or with cellular components. Population genetic analysis in humans revealed a complex scenario of local (FASLG, CD40LG, HAVCR2) and worldwide (FAS, ICOSLG) adaptation and H. sapiens-to-Neandertal gene flow (gene transfer between populations). Disease variants in these genes are preferential targets of pathogen-driven selection, and a Crohn's disease risk polymorphism targeted by bacterial-driven selection modulates the expression of ICOSLG in response to a bacterial superantigen. Therefore, we used evolutionary information to generate experimentally testable hypotheses concerning the function of specific genetic variants and indicate that adaptation to infection underlies the maintenance of autoimmune risk alleles.


Assuntos
Doenças Autoimunes/imunologia , Receptor de Morte Celular Programada 1/genética , Linfócitos T Reguladores/imunologia , Adaptação Fisiológica , Alelos , Animais , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/genética , Evolução Biológica , Fluxo Gênico , Predisposição Genética para Doença , Genética Populacional , Humanos , Ativação Linfocitária/genética , Homem de Neandertal , Polimorfismo de Nucleotídeo Único , Risco , Seleção Genética , Tolerância a Antígenos Próprios/genética
12.
Mol Biol Evol ; 37(5): 1259-1271, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917410

RESUMO

Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are ubiquitous human pathogens. Both viruses evolved from simplex viruses infecting African primates and they are thus thought to have left Africa during early human migrations. We analyzed the population structure of HSV-1 and HSV-2 circulating strains. Results indicated that HSV-1 populations have limited geographic structure and the most evident clustering by geography is likely due to recent bottlenecks. For HSV-2, the only level of population structure is accounted for by the so-called "worldwide" and "African" lineages. Analysis of ancestry components and nucleotide diversity, however, did not support the view that the worldwide lineage followed early humans during out-of-Africa dispersal. Although phylogeographic analysis confirmed an African origin for both viruses, molecular dating with a method that corrects for the time-dependent rate phenomenon indicated that HSV-1 and HSV-2 migrated from Africa in relatively recent times. In particular, we estimated that the HSV-2 worldwide lineage left the continent in the 18th century, which corresponds to the height of the transatlantic slave trade, possibly explaining the high prevalence of HSV-2 in the Americas (second highest after Africa). The limited geographic clustering of HSV-1 makes it difficult to date its exit from Africa. The split between the basal clade, containing mostly African sequences, and all other strains was dated at ∼5,000 years ago. Our data do not imply that herpes simplex viruses did not infect early humans but show that the worldwide distribution of circulating strains is the result of relatively recent events.


Assuntos
Herpes Simples/transmissão , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Migração Humana , África , Genoma Viral , Humanos , Filogeografia
13.
Mol Biol Evol ; 37(2): 442-454, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593241

RESUMO

JC polyomavirus (JCPyV) is one of the most prevalent human viruses. Findings based on the geographic distribution of viral subtypes suggested that JCPyV codiverged with human populations. This view was however challenged by data reporting a much more recent origin and expansion of JCPyV. We collected information on ∼1,100 worldwide strains and we show that their geographic distribution roughly corresponds to major human migratory routes. Bayesian phylogeographic analysis inferred a Subsaharan origin for JCPyV, although with low posterior probability. High confidence inference at internal nodes provided strong support for a long-standing association between the virus and human populations. In line with these data, pairwise FST values for JCPyV and human mtDNA sampled from the same areas showed a positive and significant correlation. Likewise, very strong relationships were found when node ages in the JCPyV phylogeny were correlated with human population genetic distances (nuclear-marker based FST). Reconciliation analysis detected a significant cophylogenetic signal for the human population and JCPyV trees. Notably, JCPyV also traced some relatively recent migration events such as the expansion of people from the Philippines/Taiwan area into Remote Oceania, the gene flow between North-Eastern Siberian and Ainus, and the Koryak contribution to Circum-Arctic Americans. Finally, different molecular dating approaches dated the origin of JCPyV in a time frame that precedes human out-of-Africa migration. Thus, JCPyV infected early human populations and accompanied our species during worldwide dispersal. JCPyV typing can provide reliable geographic information and the virus most likely adapted to the genetic background of human populations.


Assuntos
DNA Mitocondrial/genética , DNA Viral/genética , Vírus JC/classificação , Infecções por Polyomavirus/genética , Regiões Antárticas , Teorema de Bayes , Evolução Molecular , Fluxo Gênico , Migração Humana , Humanos , Vírus JC/genética , Oceania , Filipinas , Filogeografia , Infecções por Polyomavirus/virologia , Taiwan
14.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238584

RESUMO

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that recently emerged in China is thought to have a bat origin, as its closest known relative (BatCoV RaTG13) was described previously in horseshoe bats. We analyzed the selective events that accompanied the divergence of SARS-CoV-2 from BatCoV RaTG13. To this end, we applied a population genetics-phylogenetics approach, which leverages within-population variation and divergence from an outgroup. Results indicated that most sites in the viral open reading frames (ORFs) evolved under conditions of strong to moderate purifying selection. The most highly constrained sequences corresponded to some nonstructural proteins (nsps) and to the M protein. Conversely, nsp1 and accessory ORFs, particularly ORF8, had a nonnegligible proportion of codons evolving under conditions of very weak purifying selection or close to selective neutrality. Overall, limited evidence of positive selection was detected. The 6 bona fide positively selected sites were located in the N protein, in ORF8, and in nsp1. A signal of positive selection was also detected in the receptor-binding motif (RBM) of the spike protein but most likely resulted from a recombination event that involved the BatCoV RaTG13 sequence. In line with previous data, we suggest that the common ancestor of SARS-CoV-2 and BatCoV RaTG13 encoded/encodes an RBM similar to that observed in SARS-CoV-2 itself and in some pangolin viruses. It is presently unknown whether the common ancestor still exists and, if so, which animals it infects. Our data, however, indicate that divergence of SARS-CoV-2 from BatCoV RaTG13 was accompanied by limited episodes of positive selection, suggesting that the common ancestor of the two viruses was poised for human infection.IMPORTANCE Coronaviruses are dangerous zoonotic pathogens; in the last 2 decades, three coronaviruses have crossed the species barrier and caused human epidemics. One of these is the recently emerged SARS-CoV-2. We investigated how, since its divergence from a closely related bat virus, natural selection shaped the genome of SARS-CoV-2. We found that distinct coding regions in the SARS-CoV-2 genome evolved under conditions of different degrees of constraint and are consequently more or less prone to tolerate amino acid substitutions. In practical terms, the level of constraint provides indications about which proteins/protein regions are better suited as possible targets for the development of antivirals or vaccines. We also detected limited signals of positive selection in three viral ORFs. However, we warn that, in the absence of knowledge about the chain of events that determined the human spillover, these signals should not be necessarily interpreted as evidence of an adaptation to our species.


Assuntos
Betacoronavirus/genética , Evolução Molecular , Seleção Genética , Sequência de Aminoácidos , Animais , Betacoronavirus/classificação , COVID-19 , Quirópteros/virologia , Infecções por Coronavirus/virologia , Genoma Viral/genética , Humanos , Modelos Moleculares , Fases de Leitura Aberta/genética , Pandemias , Filogenia , Pneumonia Viral/virologia , SARS-CoV-2 , Proteínas Virais/química , Proteínas Virais/genética
15.
Mol Ecol ; 30(6): 1505-1515, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476453

RESUMO

Centromeres have central functions in chromosome segregation, but centromeric DNA and centromere-binding proteins evolve rapidly in most eukaryotes. The selective pressure(s) underlying the fast evolution of centromere-binding proteins are presently unknown. An attractive possibility is that selfish centromeres promote their preferential inclusion in the oocyte and centromeric proteins evolve to suppress meiotic drive (centromere drive hypothesis). We analysed the selective patterns of mammalian genes that encode kinetochore proteins and microtubule (MT)-destabilizing factors. We show that several of these proteins evolve at the same rate or faster than proteins with a role in centromere specification. Elements of the kinetochore that bind MTs or that bridge the interaction between MTs and the centromere represented the major targets of positive selection. These data are in line with the possibility that the genetic conflict fuelled by meiotic drive extends beyond genes involved in centromere specification. However, we cannot exclude that different selective pressures underlie the rapid evolution of MT-destabilizing factors and kinetochore components. Whatever the nature of such pressures, they must have been constant during the evolution of eutherian mammals, as we found a surprisingly good correlation in dN/dS (ratio of the rate of nonsynonymous and synonymous substitutions) across orders/clades. Finally, when phylogenetic relationships were accounted for, we found little evidence that the evolutionary rates of these genes change with testes size, a proxy for sperm competition. Our data indicate that, in analogy to centromeric proteins, kinetochore components are fast evolving in mammals. This observation may imply that centromere drive plays out at multiple levels or that these proteins adapt to lineage-specific centromeric features.


Assuntos
Eutérios , Cinetocoros , Animais , Centrômero/genética , Microtúbulos , Filogenia
16.
Nat Rev Genet ; 16(4): 224-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25783448

RESUMO

Infections are one of the major selective pressures acting on humans, and host-pathogen interactions contribute to shaping the genetic diversity of both organisms. Evolutionary genomic studies take advantage of experiments that natural selection has been performing over millennia. In particular, inter-species comparative genomic analyses can highlight the genetic determinants of infection susceptibility or severity. Recent examples show how evolution-guided approaches can provide new insights into host-pathogen interactions, ultimately clarifying the basis of host range and explaining the emergence of different diseases. We describe the latest developments in comparative immunology and evolutionary genetics, showing their relevance for understanding the molecular determinants of infection susceptibility in mammals.


Assuntos
Evolução Biológica , Genômica , Interações Hospedeiro-Patógeno/genética , Análise de Sequência de DNA , Sequência de Aminoácidos , Animais , Sequência de Bases , Variação Genética , Humanos , Mamíferos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
17.
J Infect Dis ; 221(8): 1286-1294, 2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-31051029

RESUMO

Varicella zoster virus (VZV) is the causative agent of chickenpox and shingles. The geographic distribution of VZV clades was taken as evidence that VZV migrated out of Africa with human populations. We show that extant VZV strains most likely originated in Europe and not in Africa. Europe was also identified as the ancestral location for most internal nodes of the VZV phylogeny, including the ancestor of clade 5 strains. We also show that strains from clades 1, 2, 3, and 5 derived a major proportion of their ancestry from each of 4 ancestral populations. Conversely, viruses from other clades displayed variable levels of admixture. Some low-level admixture was also observed for clade 5 genomes, but only for non-African viruses. This pattern indicates that the clade 5 VZV strains do not represent recent introductions from Africa due to migratory fluxes. These data have also relevance for the definition and classification of VZV clades.


Assuntos
Herpesvirus Humano 3/genética , Infecção pelo Vírus da Varicela-Zoster/virologia , África , Varicela/virologia , Europa (Continente) , Genoma Viral/genética , Genótipo , Herpes Zoster/virologia , Humanos , Filogenia , Recombinação Genética/genética
18.
Mol Ecol ; 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289207

RESUMO

Analysis of the bat viruses most closely related to SARS-CoV-2 indicated that the virus probably required limited adaptation to spread in humans. Nonetheless, since its introduction in human populations, SARS-CoV-2 must have been subject to the selective pressure imposed by the human immune system. We exploited the availability of a large number of high-quality SARS-CoV-2 genomes, as well as of validated epitope predictions, to show that B cell epitopes in the spike glycoprotein (S) and in the nucleocapsid protein (N) have higher diversity than nonepitope positions. Similar results were obtained for other human coronaviruses and for sarbecoviruses sampled in bats. Conversely, in the SARS-CoV-2 population, epitopes for CD4+ and CD8+ T cells were not more variable than nonepitope positions. A significant reduction in epitope variability was instead observed for some of the most immunogenic proteins (S, N, ORF8 and ORF3a). Analysis over longer evolutionary time frames indicated that this effect is not due to differential constraints. These data indicate that SARS-CoV-2 evolves to elude the host humoral immune response, whereas recognition by T cells is not actively avoided by the virus. However, we also found a trend of lower diversity of T cell epitopes for common cold coronaviruses, indicating that epitope conservation per se is not directly linked to disease severity. We suggest that conservation serves to maintain epitopes that elicit tolerizing T cell responses or induce T cells with regulatory activity.

19.
Nucleic Acids Res ; 46(14): 7153-7168, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29893967

RESUMO

Telomeres protect the ends of eukaryotic chromosomes and are essential for cell viability. In mammals, telomere dynamics vary with life history traits (e.g. body mass and longevity), suggesting differential selection depending on physiological characteristics. Telomeres, in analogy to centromeric regions, also represent candidate meiotic drivers and subtelomeric DNA evolves rapidly. We analyzed the evolutionary history of mammalian genes implicated in telomere homeostasis (TEL genes). We detected widespread positive selection and we tested two alternative hypotheses: (i) fast evolution is driven by changes in life history traits; (ii) a conflict with selfish DNA elements at the female meiosis represents the underlying selective pressure. By accounting for the phylogenetic relationships among mammalian species, we show that life history traits do not contribute to shape diversity of TEL genes. Conversely, the evolutionary rate of TEL genes correlates with expression levels during meiosis and episodes of positive selection across mammalian species are associated with karyotype features (number of chromosome arms). We thus propose a telomere drive hypothesis, whereby (sub)telomeres and telomere-binding proteins are engaged in an intra-genomic conflict similar to the one described for centromeres.


Assuntos
Evolução Molecular , Expressão Gênica , Células Germinativas/metabolismo , Homeostase do Telômero/genética , Animais , Feminino , Humanos , Cariótipo , Masculino , Mamíferos , Meiose/genética , Camundongos , Filogenia , Proteínas de Ligação a Telômeros/classificação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
20.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045985

RESUMO

The apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established. Here, we have assessed gene expression and deaminase activity of various APOBEC3 gene family members in HCMV-infected primary human foreskin fibroblasts (HFFs). Specifically, we show that APOBEC3G (A3G) gene products and, to a lesser degree, those of A3F but not of A3A, are upregulated in HCMV-infected HFFs. We also show that HCMV-mediated induction of A3G expression is mediated by interferon beta (IFN-ß), which is produced early during HCMV infection. However, knockout or overexpression of A3G does not affect HCMV replication, indicating that A3G is not a restriction factor for HCMV. Finally, through a bioinformatics approach, we show that HCMV has evolved mutational robustness against IFN-ß by limiting the presence of A3G hot spots in essential open reading frames (ORFs) of its genome. Overall, our findings uncover a novel immune evasion strategy by HCMV with profound implications for HCMV infections.IMPORTANCE APOBEC3 family of proteins plays a pivotal role in intrinsic immunity defense mechanisms against multiple viral infections, including retroviruses, through the deamination activity. However, the currently available data on APOBEC3 editing mechanisms upon HCMV infection remain unclear. In the present study, we show that particularly the APOBEC3G (A3G) member of the deaminase family is strongly induced upon infection with HCMV in fibroblasts and that its upregulation is mediated by IFN-ß. Furthermore, we were able to demonstrate that neither A3G knockout nor A3G overexpression appears to modulate HCMV replication, indicating that A3G does not inhibit HCMV replication. This may be explained by HCMV escape strategy from A3G activity through depletion of the preferred nucleotide motifs (hot spots) from its genome. The results may shed light on antiviral potential of APOBEC3 activity during HCMV infection, as well as the viral counteracting mechanisms under A3G-mediated selective pressure.


Assuntos
Desaminase APOBEC-3G/genética , Citomegalovirus/genética , Genoma Viral , Evasão da Resposta Imune , Interferon beta/genética , Desaminase APOBEC-3G/imunologia , Sistemas CRISPR-Cas , Linhagem Celular , Biologia Computacional , Citomegalovirus/imunologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Fibroblastos/imunologia , Fibroblastos/virologia , Prepúcio do Pênis/citologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Imunidade Inata , Interferon beta/imunologia , Masculino , Mutagênese , Fases de Leitura Aberta , Cultura Primária de Células , Transdução de Sinais , Células THP-1 , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA