Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zootaxa ; 5301(4): 427-446, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37518552

RESUMO

The investigation of the Bolboceratidae collection of the Stockholm Museum of Natural History (NHRS) yielded 12 type specimens of eight Afrotropical and one Australian species. The majority of these types belongs to species described by Carl Henrik Boheman (1796-1868) based on specimens collected by Johan August Wahlberg (1810-1856) in southern Africa. In two of these species, we found ambiguity among potential syntypes. Therefore, based on comparison with original descriptions, we designate lectotypes for Bolboceras caffrum Boheman, 1857 and Bolboceras exasperans Péringuey, 1908, both of which are today classified in the genus Bolbocaffer Vulcano, Martínez & Pereira, 1969. Finally, we establish Bolboceras matabele Péringuey, 1908 (syn. nov.) as a junior subjective synonym of B. exasperans, we confirm a few synonymies that were historically established without study of type specimens, and we resurrect Bolboceras dorsuale Boheman, 1857 from previous synonymy under B. maculicolle Boheman, 1857 (Mimobolbus dorsualis (Boheman, 1857) n. comb. and stat. rev.).

2.
Biodivers Data J ; 8: e56286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177946

RESUMO

BACKGROUND: Despite Sweden's strong entomological tradition, large portions of its insect fauna remain poorly known. As part of the Swedish Taxonomy Initiative, launched in 2002 to document all multi-cellular species occurring in the country, the first taxonomically-broad inventory of the country's insect fauna was initiated, the Swedish Malaise Trap Project (SMTP). In total, 73 Malaise traps were deployed at 55 localities representing a wide range of habitats across the country. Most traps were run continuously from 2003 to 2006 or for a substantial part of that time period. The total catch is estimated to contain 20 million insects, distributed over 1,919 samples (Karlsson et al. 2020). The samples have been sorted into more than 300 taxonomic units, which are made available for expert identification. Thus far, more than 100 taxonomists have been involved in identifying the sorted material, recording the presence of 4,000 species. One third of these had not been recorded from Sweden before and 700 have tentatively been identified as new to science. NEW INFORMATION: Here, we describe the SMTP dataset, published through the Global Biodiversity Information Facility (GBIF). Data on the sorted material are available in the "SMTP Collection Inventory" dataset. It currently includes more than 130,000 records of taxonomically-sorted samples. Data on the identified material are published using the Darwin Core standard for sample-based data. That information is divided up into group-specific datasets, as the sample set processed for each group is different and in most cases non-overlapping. The current data are divided into 79 taxonomic datasets, largely corresponding to taxonomic sorting fractions. The orders Diptera and Hymenoptera together comprise about 90% of the specimens in the material and these orders are mainly sorted to family or subfamily. The remaining insect taxa are mostly sorted to the order level. In total, the 79 datasets currently available comprise around 165,000 specimens, that is, about 1% of the total catch. However, the data are now accumulating rapidly and will be published continuously. The SMTP dataset is unique in that it contains a large proportion of data on previously poorly-known taxa in the Diptera and Hymenoptera.

3.
Biodivers Data J ; 8: e47255, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32015667

RESUMO

The Swedish Malaise Trap Project (SMTP) is one of the most ambitious insect inventories ever attempted. The project was designed to target poorly known insect groups across a diverse range of habitats in Sweden. The field campaign involved the deployment of 73 Malaise traps at 55 localities across the country for three years (2003-2006). Over the past 15 years, the collected material has been hand sorted by trained technicians into over 300 taxonomic fractions suitable for expert attention. The resulting collection is a tremendous asset for entomologists around the world, especially as we now face a desperate need for baseline data to evaluate phenomena like insect decline and climate change. Here, we describe the history, organisation, methodology and logistics of the SMTP, focusing on the rationale for the decisions taken and the lessons learned along the way. The SMTP represents one of the early instances of community science applied to large-scale inventory work, with a heavy reliance on volunteers in both the field and the laboratory. We give estimates of both staff effort and volunteer effort involved. The project has been funded by the Swedish Taxonomy Initiative; in total, the inventory has cost less than 30 million SEK (approximately 3.1 million USD). Based on a subset of the samples, we characterise the size and taxonomic composition of the SMTP material. Several different extrapolation methods suggest that the material comprises around 20 million specimens in total. The material is dominated by Diptera (75% of the specimens) and Hymenoptera (15% of specimens). Amongst the Diptera, the dominant groups are Chironomidae (37% of specimens), Sciaridae (15%), Phoridae (13%), Cecidomyiidae (9.5%) and Mycetophilidae (9.4%). Within Hymenoptera, the major groups are Ichneumonidae (44% of specimens), Diaprioidea (19%), Braconidae (9.6%), Platygastroidea (8.5%) and Chalcidoidea (7.9%). The taxonomic composition varies with latitude and season. Several Diptera and Hymenoptera groups are more common in non-summer samples (collected from September to April) and in the North, while others show the opposite pattern. About 1% of the total material has been processed and identified by experts so far. This material represents over 4,000 species. One third of these had not been recorded from Sweden before and almost 700 of them are new to science. These results reveal the large amounts of taxonomic work still needed on Palaearctic insect faunas. Based on the SMTP experiences, we discuss aspects of planning and conducting future large-scale insect inventory projects using mainly traditional approaches in relation to more recent approaches that rely on molecular techniques.

4.
PLoS One ; 15(3): e0228561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130216

RESUMO

Despite more than 250 years of taxonomic research, we still have only a vague idea about the true size and composition of the faunas and floras of the planet. Many biodiversity inventories provide limited insight because they focus on a small taxonomic subsample or a tiny geographic area. Here, we report on the size and composition of the Swedish insect fauna, thought to represent roughly half of the diversity of multicellular life in one of the largest European countries. Our results are based on more than a decade of data from the Swedish Taxonomy Initiative and its massive inventory of the country's insect fauna, the Swedish Malaise Trap Project The fauna is considered one of the best known in the world, but the initiative has nevertheless revealed a surprising amount of hidden diversity: more than 3,000 new species (301 new to science) have been documented so far. Here, we use three independent methods to analyze the true size and composition of the fauna at the family or subfamily level: (1) assessments by experts who have been working on the most poorly known groups in the fauna; (2) estimates based on the proportion of new species discovered in the Malaise trap inventory; and (3) extrapolations based on species abundance and incidence data from the inventory. For the last method, we develop a new estimator, the combined non-parametric estimator, which we show is less sensitive to poor coverage of the species pool than other popular estimators. The three methods converge on similar estimates of the size and composition of the fauna, suggesting that it comprises around 33,000 species. Of those, 8,600 (26%) were unknown at the start of the inventory and 5,000 (15%) still await discovery. We analyze the taxonomic and ecological composition of the estimated fauna, and show that most of the new species belong to Hymenoptera and Diptera groups that are decomposers or parasitoids. Thus, current knowledge of the Swedish insect fauna is strongly biased taxonomically and ecologically, and we show that similar but even stronger biases have distorted our understanding of the fauna in the past. We analyze latitudinal gradients in the size and composition of known European insect faunas and show that several of the patterns contradict the Swedish data, presumably due to similar knowledge biases. Addressing these biases is critical in understanding insect biomes and the ecosystem services they provide. Our results emphasize the need to broaden the taxonomic scope of current insect monitoring efforts, a task that is all the more urgent as recent studies indicate a possible worldwide decline in insect faunas.


Assuntos
Biodiversidade , Censos , Extinção Biológica , Insetos/classificação , Animais , Dípteros/classificação , Ecossistema , Europa (Continente) , Filogenia , Registros , Suécia
6.
Sci Total Environ ; 616-617: 1440-1448, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29070445

RESUMO

Rapid biodiversity loss has emphasized the need to understand how biodiversity affects the provisioning of ecological functions. Of particular interest are species and communities with versatile impacts on multiple parts of the environment, linking processes in the biosphere, lithosphere, and atmosphere to human interests in the anthroposphere (in this case, cattle farming). In this study, we examine the role of a specific group of insects - beetles feeding on cattle dung - on multiple ecological functions spanning these spheres (dung removal, soil nutrient content and greenhouse gas emissions). We ask whether the same traits which make species prone to extinction (i.e. response traits) may also affect their functional efficiency (as effect traits). To establish the link between response and effect traits, we first evaluated whether two traits (body mass and nesting strategy, the latter categorized as tunnelers or dwellers) affected the probability of a species being threatened. We then tested for a relationship between these traits and ecosystem functioning. Across Scandinavian dung beetle species, 75% of tunnelers and 30% of dwellers are classified as threatened. Hence, nesting strategy significantly affects the probability of a species being threatened, and constitutes a response trait. Effect traits varied with the ecological function investigated: density-specific dung removal was influenced by both nesting strategy and body mass, whereas methane emissions varied with body mass and nutrient recycling with nesting strategy. Our findings suggest that among Scandinavian dung beetles, nesting strategy is both a response and an effect trait, with tunnelers being more efficient in providing several ecological functions and also being more sensitive to extinction. Consequently, functionally important tunneler species have suffered disproportionate declines, and species not threatened today may be at risk of becoming so in the near future. This linkage between effect and response traits aggravates the consequences of ongoing biodiversity loss.


Assuntos
Besouros/fisiologia , Ecossistema , Agricultura , Animais , Biodiversidade , Bovinos , Ecologia , Fezes , Metano/análise , Solo/química
7.
Biodivers Data J ; (5): e8049, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28325971

RESUMO

BACKGROUND: The British and Irish checklist of Cynipoidea is revised, considerably updating the last complete checklist published in 1978. Disregarding uncertain identifications, 220 species are now known from Britain and Ireland, comprising 91 Cynipidae (including two established non-natives), 127 Figitidae and two Ibaliidae. NEW INFORMATION: One replacement name is proposed, Kleidotoma thomsoni Forshage, for the secondary homonym Kleidotoma tetratoma Thomson, 1861 (nec K. tetratoma (Hartig, 1841)).

8.
Zootaxa ; 4039(4): 543-52, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26624640

RESUMO

The interpretation of Linnaeus' name Sphex semiaurata Linnaeus, 1761 has been controversial. After type examinations, we conclude that it is identical with the common Cleptes pallipes Lepeletier, 1806 and thus re-establish the old synonymy: Cleptes semiauratus (Linnaeus, 1761) (=Cleptes pallipes Lepeletier, 1806, syn. reinst.). We have been unable to find an available name for the species with which it has been confused. In order to be able to designate a suitable type specimen, we prefer to describe it as a new species rather than suggest a replacement name: Cleptes striatipleuris Rosa, Forshage, Paukkunen & Soon sp. nov. (=Cleptes semiauratus sensu Lepeletier, 1806, nec Linnaeus, 1761; =C. splendens sensu Linsenmaier 1959, nec Fabricius, 1798).


Assuntos
Himenópteros/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Feminino , Himenópteros/anatomia & histologia , Himenópteros/crescimento & desenvolvimento , Masculino , Tamanho do Órgão
9.
Zookeys ; (493): 1-176, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878545

RESUMO

The Afrotropical Cynipoidea are represented by 306 described species and 54 genera in four families: Cynipidae, Figitidae, Liopteridae and Ibaliidae, the latter represented by a single introduced species. Seven of these genera are only represented by undescribed species in the region. Seven new genus-level synonymies, one genus resurrected from synonymy, 54 new combinations, one combination reinstated, and one new replacement name are presented. We provide identification keys to the families, subfamilies and genera of cynipoid wasps occurring in the Afrotropical region (Africa south of the Sahara, including Madagascar and southern Arabian Peninsula). Online interactive Lucid Phoenix and Lucid matrix keys are available at: http://www.waspweb.org/Cynipoidea/Keys/index.htm. An overview of the biology and checklists of species for each genus are provided. This paper constitutes the first contributory chapter to the book on Afrotropical Hymenoptera.

10.
Biodivers Data J ; (3): e4186, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859127

RESUMO

Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. Hymenoptera is one of the four largest orders of insects, with about 130,000 described species. In the Fauna Europaea database, 'Hymenoptera - Apocrita (excluding Ichneumonoidea)' comprises 13 superfamilies, 52 families, 91 subfamilies, 38 tribes and 13,211 species. The paper includes a complete list of taxa dealt with, the number of species in each and the name of the specialist responsible for data acquisition. As a general conclusion about the European fauna of Hymenoptera, the best known countries in terms of recorded species are those from northwestern Europe, with the least known fauna probably in the more eastern and southeastern parts of Europe.

11.
Zookeys ; (453): 37-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493059

RESUMO

The cynipoid subfamily Figitinae is poorly represented in the Afrotropical region with two genera (Figites Latreille and Xyalophora Kieffer) and six species currently known. Here we record an additional two genera (Neralsia Cameron and Lonchidia Thomson) for the region and describe three new species: Neralsiahaddocki sp. n.; Xyalophoratedjoansi sp. n.; Xyalophoratintini sp. n. Benoit's species described in 1956 are synonymized under Figitesaciculatus (Benoit, 1956): Figiteseffossus syn. n.; Figitesfavonius syn. n.; Figitesfurvus syn. n.; Figitesfraudator syn. n. Identification keys to the figitine genera and species occurring in the Afrotropical region are provided. Online interactive Lucid Phoenix and Lucid matrix keys are available at: http://www.waspweb.org/Cynipoidea/Keys/index.htm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA