Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 54(9): 2807-27, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19369712

RESUMO

The two-dimensional lateral dose profiles D(x, y) of narrow photon beams, typically used for beamlet-based IMRT, stereotactic radiosurgery and tomotherapy, can be regarded as resulting from the convolution of a two-dimensional rectangular function R(x, y), which represents the photon fluence profile within the field borders, with a rotation-symmetric convolution kernel K(r). This kernel accounts not only for the lateral transport of secondary electrons and small-angle scattered photons in the absorber, but also for the 'geometrical spread' of each pencil beam due to the phase-space distribution of the photon source. The present investigation of the convolution kernel was based on an experimental study of the associated line-spread function K(x). Systematic cross-plane scans of rectangular and quadratic fields of variable side lengths were made by utilizing the linear current versus dose rate relationship and small energy dependence of the unshielded Si diode PTW 60012 as well as its narrow spatial resolution function. By application of the Fourier convolution theorem, it was observed that the values of the Fourier transform of K(x) could be closely fitted by an exponential function exp(-2pilambdanu(x)) of the spatial frequency nu(x). Thereby, the line-spread function K(x) was identified as the Lorentz function K(x) = (lambda/pi)[1/(x(2) + lambda(2))], a single-parameter, bell-shaped but non-Gaussian function with a narrow core, wide curve tail, full half-width 2lambda and convenient convolution properties. The variation of the 'kernel width parameter' lambda with the photon energy, field size and thickness of a water-equivalent absorber was systematically studied. The convolution of a rectangular fluence profile with K(x) in the local space results in a simple equation accurately reproducing the measured lateral dose profiles. The underlying 2D convolution kernel (point-spread function) was identified as K(r) = (lambda/2pi)[1/(r(2) + lambda(2))](3/2), fitting experimental results as well. These results are discussed in terms of their use for narrow-beam treatment planning.


Assuntos
Análise de Fourier , Fótons , Modelos Biológicos , Imagens de Fantasmas , Doses de Radiação , Água
2.
Z Med Phys ; 23(2): 129-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357230

RESUMO

This study is concerned with the spatial resolution of air-filled ionization chambers in photon-beam dosimetry, i.e. with their dose response functions. These act as convolution kernels K(x,y), transforming true dose profiles D(x,y) into the measured signal profiles M(x,y). One-dimensional dose response functions have been experimentally determined for nine types of cylindrical ionization chambers both in their lateral and longitudinal directions, as well as across two plane-parallel chambers and for the single chambers of two 2D arrays. All these 1D dose response functions are closely described by Gaussian functions. The associated energy-dependent values of the standard deviations σ have been measured for 6 and 15 MV photons with an uncertainty of 0.02mm. At depths beyond secondary electron fluence build-up, there was no detectable depth dependence of the σ values. The general occurrence of Gaussian dose response functions, their extension beyond the geometrical boundaries of the chambers, and the energy dependence of their standard deviations can be understood by considering the underlying system of convolutions, which is the origin of the influences of secondary electron transport. Monte-Carlo simulations of the convolution kernels for a cylindrical, a square, and a flat ionization chamber and their Fourier analysis have been employed to show that the Gaussian convolution kernels are approximations to the true dose response functions, valid in the clinically relevant domain of the spatial frequency. This paper is conceived as the starting point for the deconvolution methods to be described in a further publication.


Assuntos
Desenho Assistido por Computador , Interpretação Estatística de Dados , Modelos Estatísticos , Distribuição Normal , Fótons , Radiometria/instrumentação , Radiometria/métodos , Simulação por Computador , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA