Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(5): e2315492121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252841

RESUMO

The Earth's radiative cooling is a key driver of climate. Determining how it is affected by greenhouse gas concentration is a core question in climate-change sciences. Due to the complexity of radiative transfer processes, current practices to estimate this cooling require the development and use of a suite of radiative transfer models whose accuracy diminishes as we move from local, instantaneous estimates to global estimates over the whole globe and over long periods of time (decades). Here, we show that recent advances in nonlinear Monte Carlo methods allow a paradigm shift: a completely unbiased estimate of the Earth's infrared cooling to space can be produced using a single model, integrating the most refined spectroscopic models of molecular gas energy transitions over a global scale and over years, all at a very low computational cost (a few seconds).

2.
Opt Lett ; 48(18): 4909-4912, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707934

RESUMO

Relying on Feynman-Kac path-integral methodology, we present a new statistical perspective on wave single-scattering by complex three-dimensional objects. The approach is implemented on three models-Schiff approximation, Born approximation, and rigorous Born series-and familiar interpretative difficulties such as the analysis of moments over scatterer distributions (size, orientation, shape, etc.) are addressed. In terms of the computational contribution, we show that commonly recognized features of the Monte Carlo method with respect to geometric complexity can now be available when solving electromagnetic scattering.

3.
BMC Public Health ; 23(1): 924, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217931

RESUMO

BACKGROUND: Climate change is increasing the dispersion of mosquitoes and the spread of viruses of which some mosquitoes are the main vectors. In Quebec, the surveillance and management of endemic mosquito-borne diseases, such as West Nile virus or Eastern equine encephalitis, could be improved by mapping the areas of risk supporting vector populations. However, there is currently no active tool tailored to Quebec that can predict mosquito population abundances, and we propose, with this work, to help fill this gap. METHODS: Four species of mosquitos were studied in this project for the period from 2003 to 2016 for the southern part of the province of Quebec: Aedes vexans (VEX), Coquillettidia perturbans (CQP), Culex pipiens-restuans group (CPR) and Ochlerotatus stimulans group (SMG) species. We used a negative binomial regression approach, including a spatial component, to model the abundances of each species or species group as a function of meteorological and land-cover variables. We tested several sets of variables combination, regional and local scale variables for landcover and different lag period for the day of capture for weather variables, to finally select one best model for each species. RESULTS: Models selected showed the importance of the spatial component, independently of the environmental variables, at the larger spatial scale. In these models, the most important land-cover predictors that favored CQP and VEX were 'forest', and 'agriculture' (for VEX only). Land-cover 'urban' had negative impact on SMG and CQP. The weather conditions on the trapping day and previous weather conditions summarized over 30 or 90 days were preferred over a shorter period of seven days, suggesting current and long-term previous weather conditions effects on mosquito abundance. CONCLUSIONS: The strength of the spatial component highlights the difficulties in modelling the abundance of mosquito species and the model selection shows the importance of selecting the right environmental predictors, especially when choosing the temporal and spatial scale of these variables. Climate and landscape variables were important for each species or species group, suggesting it is possible to consider their use in predicting long-term spatial variationsin the abundance of mosquitoes potentially harmful to public health in southern Quebec.


Assuntos
Aedes , Culex , Culicidae , Vírus do Nilo Ocidental , Animais , Humanos , Quebeque/epidemiologia , Mosquitos Vetores
4.
J Environ Manage ; 301: 113817, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607136

RESUMO

Assessing trade-offs among ecosystem services (ESs) that are provided by forests is necessary to support decision-making and to minimize negative effects of timber harvesting. In this study, we examined how spatial data, forest operational rules, ESs, and probabilistic statistics can be combined into a practical tool for trade-off analysis that could guide decision-making towards sustainable forestry. Our main goal was to analyze trade-offs among the wood provisioning ES and other forest ESs at the landscape level using a Bayesian belief network (BBN). We used LiDAR data to derive four ES layers as inputs to a spatial BBN: (i) wood provisioning; (ii) erosion regulating; (iii) climate regulating; and (iv) habitat supporting. We quantified operational constraints with four forest operational rules (FOR) that were defined in terms of: (i) potential harvest block size; (ii) distance between a small potential harvest block and a larger harvest block; (iii) gross merchantable volume (GMV); and (iv) distance to an existing resource road. Maps of the most probable trade-off classes between the wood provisioning ES and other ESs enabled us to identify areas where timber harvesting should be avoided or where timber harvesting should have a very low negative effect on other ESs. Even with our most restrictive management scenario, the total GMV that could be harvested met the annual allowable cut (AAC) volume required to meet sustainable forestry objectives. Through our study, we demonstrated that high-resolution spatial data could be used to quantify trade-offs among wood provisioning ES and other forest-related ESs and to simulate small changes in ES indicators within the BBN. We also demonstrated the potential to evaluate management scenarios to reduce trade-offs by considering FOR as inputs to the BBN. Maps of the most probable trade-off classes among two or three ESs under operational constraints provide key information to guide forest management decision-making towards sustainable forestry.


Assuntos
Ecossistema , Agricultura Florestal , Teorema de Bayes , Conservação dos Recursos Naturais , Florestas
5.
Sensors (Basel) ; 22(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009577

RESUMO

Species identification is a critical factor for obtaining accurate forest inventories. This paper compares the same method of tree species identification (at the individual crown level) across three different types of airborne laser scanning systems (ALS): two linear lidar systems (monospectral and multispectral) and one single-photon lidar (SPL) system to ascertain whether current individual tree crown (ITC) species classification methods are applicable across all sensors. SPL is a new type of sensor that promises comparable point densities from higher flight altitudes, thereby increasing lidar coverage. Initial results indicate that the methods are indeed applicable across all of the three sensor types with broadly similar overall accuracies (Hardwood/Softwood, 83-90%; 12 species, 46-54%; 4 species, 68-79%), with SPL being slightly lower in all cases. The additional intensity features that are provided by multispectral ALS appear to be more beneficial to overall accuracy than the higher point density of SPL. We also demonstrate the potential contribution of lidar time-series data in improving classification accuracy (Hardwood/Softwood, 91%; 12 species, 58%; 4 species, 84%). Possible causes for lower SPL accuracy are (a) differences in the nature of the intensity features and (b) differences in first and second return distributions between the two linear systems and SPL. We also show that segmentation (and field-identified training crowns deriving from segmentation) that is performed on an initial dataset can be used on subsequent datasets with similar overall accuracy. To our knowledge, this is the first study to compare these three types of ALS systems for species identification at the individual tree level.


Assuntos
Florestas , Árvores , Lasers , Luz
6.
J Environ Manage ; 246: 334-344, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31185320

RESUMO

Wetlands are affected by climate and anthropogenic changes, which influence the ecosystem services (ES) they provide. This study presents a spatially explicit quantification of wetland ESs. The study site is the Yamaska river watershed located in Quebec, Canada. The proposed approach includes four main steps: (1) statistical selection of function indicators (FI) to build a composite ecosystem service indicator (ESI); (2) temporal land use mapping for past (1984), recent (2011) and future scenarios (2050); (3) mapping and quantification of FIs and ESIs at all temporal and spatial scales; and (4) synthesis of multispatial and multitemporal information using a diagram representation. Results present the spatiotemporal evolution of the ES on maintaining habitat provided by wetlands in the studied watershed. The historical characterization shows a general degradation of this service on the entire study area for the last 30 years. The proposed approach can target priority sectors in which this service has deteriorated or is lacking. Future scenarios show the urgency to act in order to preserve current intact areas, because even the optimistic scenario indicates that the studied ES would not return to its 1984 state. The proposed approach allows a spatiotemporal mapping of ESs combined with a visualization of their ecological, social, and economic components in a context of territorial management scenarios. This multi-scale method is reproducible, robust and can be replicated for other ESs in different territories.


Assuntos
Ecossistema , Áreas Alagadas , Canadá , Conservação dos Recursos Naturais , Quebeque
7.
PLoS Comput Biol ; 8(9): e1002678, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028277

RESUMO

Collective motion phenomena in large groups of social organisms have long fascinated the observer, especially in cases, such as bird flocks or fish schools, where large-scale highly coordinated actions emerge in the absence of obvious leaders. However, the mechanisms involved in this self-organized behavior are still poorly understood, because the individual-level interactions underlying them remain elusive. Here, we demonstrate the power of a bottom-up methodology to build models for animal group motion from data gathered at the individual scale. Using video tracks of fish shoal in a tank, we show how a careful, incremental analysis at the local scale allows for the determination of the stimulus/response function governing an individual's moving decisions. We find in particular that both positional and orientational effects are present, act upon the fish turning speed, and depend on the swimming speed, yielding a novel schooling model whose parameters are all estimated from data. Our approach also leads to identify a density-dependent effect that results in a behavioral change for the largest groups considered. This suggests that, in confined environment, the behavioral state of fish and their reaction patterns change with group size. We debate the applicability, beyond the particular case studied here, of this novel framework for deciphering interactions in moving animal groups.


Assuntos
Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Peixes/fisiologia , Modelos Biológicos , Orientação/fisiologia , Comportamento Espacial/fisiologia , Natação/fisiologia , Animais , Simulação por Computador
8.
PLoS One ; 18(4): e0283681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023098

RESUMO

It was recently shown that radiation, conduction and convection can be combined within a single Monte Carlo algorithm and that such an algorithm immediately benefits from state-of-the-art computer-graphics advances when dealing with complex geometries. The theoretical foundations that make this coupling possible are fully exposed for the first time, supporting the intuitive pictures of continuous thermal paths that run through the different physics at work. First, the theoretical frameworks of propagators and Green's functions are used to demonstrate that a coupled model involving different physical phenomena can be probabilized. Second, they are extended and made operational using the Feynman-Kac theory and stochastic processes. Finally, the theoretical framework is supported by a new proposal for an approximation of coupled Brownian trajectories compatible with the algorithmic design required by ray-tracing acceleration techniques in highly refined geometry.


Assuntos
Convecção , Temperatura Alta , Simulação por Computador , Fenômenos Físicos , Algoritmos , Método de Monte Carlo
9.
Phys Rev E ; 105(2-2): 025305, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291173

RESUMO

This article proposes a statistical numerical method to address gas kinetics problems obeying the Boltzmann equation. This method is inspired by Monte Carlo algorithms used in linear transport physics, where virtual particles are followed backwards in time along their paths. The nonlinear character of gas kinetics translates, in the numerical simulations presented here, into branchings of the virtual particle paths. The obtained algorithms have displayed in the few tests presented here two noticeable qualities: (1) they involve no mesh and (2) they allow one to easily compute the gas density at rarefied places of the phase space, for example, at high kinetic energy.

10.
Sci Adv ; 8(27): eabp8934, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857481

RESUMO

Urban areas are a high-stake target of climate change mitigation and adaptation measures. To understand, predict, and improve the energy performance of cities, the scientific community develops numerical models that describe how they interact with the atmosphere through heat and moisture exchanges at all scales. In this review, we present recent advances that are at the origin of last decade's revolution in computer graphics, and recent breakthroughs in statistical physics that extend well-established path-integral formulations to nonlinear coupled models. We argue that this rare conjunction of scientific advances in mathematics, physics, computer, and engineering sciences opens promising avenues for urban climate modeling and illustrate this with coupled heat transfer simulations in complex urban geometries under complex atmospheric conditions. We highlight the potential of these approaches beyond urban climate modeling for the necessary appropriation of the issues at the heart of the energy transition by societies.

11.
Sensors (Basel) ; 8(1): 529-560, 2008 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27879721

RESUMO

Forest inventory data often provide the required base data to enable the largearea mapping of biomass over a range of scales. However, spatially explicit estimates ofabove-ground biomass (AGB) over large areas may be limited by the spatial extent of theforest inventory relative to the area of interest (i.e., inventories not spatially exhaustive), orby the omission of inventory attributes required for biomass estimation. These spatial andattributional gaps in the forest inventory may result in an underestimation of large areaAGB. The continuous nature and synoptic coverage of remotely sensed data have led totheir increased application for AGB estimation over large areas, although the use of thesedata remains challenging in complex forest environments. In this paper, we present anapproach to generating spatially explicit estimates of large area AGB by integrating AGBestimates from multiple data sources; 1. using a lookup table of conversion factors appliedto a non-spatially exhaustive forest inventory dataset (R² = 0.64; RMSE = 16.95 t/ha), 2.applying a lookup table to unique combinations of land cover and vegetation densityoutputs derived from remotely sensed data (R² = 0.52; RMSE = 19.97 t/ha), and 3. hybridmapping by augmenting forest inventory AGB estimates with remotely sensed AGB estimates where there are spatial or attributional gaps in the forest inventory data. Over our714,852 ha study area in central Saskatchewan, Canada, the AGB estimate generated fromthe forest inventory was approximately 40 Mega tonnes (Mt); however, the inventoryestimate represents only 51% of the total study area. The AGB estimate generated from theremotely sensed outputs that overlap those made from the forest inventory based approachdiffer by only 2 %; however in total, the remotely sensed estimate is 30 % greater (58 Mt)than the estimate generated from the forest inventory when the entire study area isaccounted for. Finally, using the hybrid approach, whereby the remotely sensed inputswere used to fill spatial gaps in the forest inventory, the total AGB for the study area wasestimated at 62 Mt. In the example presented, data integration facilitates comprehensiveand spatially explicit estimation of AGB for the entire study area.

12.
PLoS One ; 13(12): e0206817, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517114

RESUMO

Monitoring small groups of sheep in spontaneous evolution in the field, we decipher behavioural rules that sheep follow at the individual scale in order to sustain collective motion. Individuals alternate grazing mode at null speed and moving mode at walking speed, so cohesive motion stems from synchronising when they decide to switch between the two modes. We propose a model for the individual decision making process, based on switching rates between stopped / walking states that depend on behind / ahead locations and states of the others. We parametrize this model from data. Next, we translate this (microscopic) individual-based model into its density-flow (macroscopic) equations counterpart. Numerical solving these equations display a traveling pulse propagating at constant speed even though each individual is at any moment either stopped or walking. Considering the minimal model embedded in these equations, we derive analytically the steady shape of the pulse (sech square). The parameters of the pulse (shape and speed) are expressed as functions of individual parameters. This pulse emerges from the non linear coupling of start/stop individual decisions which compensate exactly for diffusion and promotes a steady ratio of walking / stopped individuals, which in turn determines the traveling speed of the pulse. The system seems to converge to this pulse from any initial condition, and to recover the pulse after perturbation. This gives a high robustness to this coordination mechanism.


Assuntos
Comportamento Animal/fisiologia , Modelos Biológicos , Ovinos/fisiologia , Velocidade de Caminhada/fisiologia , Animais
13.
Sci Rep ; 8(1): 13302, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185986

RESUMO

Monte Carlo is famous for accepting model extensions and model refinements up to infinite dimension. However, this powerful incremental design is based on a premise which has severely limited its application so far: a state-variable can only be recursively defined as a function of underlying state-variables if this function is linear. Here we show that this premise can be alleviated by projecting nonlinearities onto a polynomial basis and increasing the configuration space dimension. Considering phytoplankton growth in light-limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering by particles, and concentrated solar power plant production, we prove the real-world usability of this advance in four test cases which were previously regarded as impracticable using Monte Carlo approaches. We also illustrate an outstanding feature of our method when applied to acute problems with interacting particles: handling rare events is now straightforward. Overall, our extension preserves the features that made the method popular: addressing nonlinearities does not compromise on model refinement or system complexity, and convergence rates remain independent of dimension.


Assuntos
Interpretação Estatística de Dados , Método de Monte Carlo , Dinâmica não Linear , Algoritmos , Simulação por Computador
14.
Artigo em Inglês | MEDLINE | ID: mdl-25353837

RESUMO

Many animals in heterogeneous environments bias their trajectories displaying a preference for the vicinity of boundaries. Here we propose a criterion, relying on recent invariance properties of residence times for microreversible Boltzmann's walks, that permits detecting and quantifying boundary-following behaviors. On this basis we introduce a boundary-following model that is a nonmicroreversible Boltzmann's walk and that can represent all kinds of boundary-following distributions. This allows us to perform a theoretical analysis of field-resolved boundary following in animals. Two consequences are pointed out and are illustrated: A systematic procedure can now be used for extraction of individual properties from experimental field measurements, and boundary-curvature influence can be recovered as an emerging property without the need for individuals perceiving the curvature via complex physiological mechanisms. The presented results apply to any memoryless correlated random walk, such as the run-and-tumble models that are widely used in cell motility studies.


Assuntos
Modelos Biológicos , Comportamento Espacial , Animais , Fatores de Tempo
15.
PLoS One ; 8(5): e64865, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741409

RESUMO

In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads.


Assuntos
Gelo , Árvores , Mudança Climática , Quebeque
16.
PLoS One ; 8(10): e76531, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204636

RESUMO

The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by [Formula: see text] rad ([Formula: see text] data points). At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ([Formula: see text] segments), this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the [Formula: see text] incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.


Assuntos
Formigas/fisiologia , Gravitação , Modelos Teóricos , Caminhada , Animais , Comportamento Animal
17.
PLoS One ; 7(6): e38588, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761685

RESUMO

The last decades have seen an increasing interest in modeling collective animal behavior. Some studies try to reproduce as accurately as possible the collective dynamics and patterns observed in several animal groups with biologically plausible, individual behavioral rules. The objective is then essentially to demonstrate that the observed collective features may be the result of self-organizing processes involving quite simple individual behaviors. Other studies concentrate on the objective of establishing or enriching links between collective behavior researches and cognitive or physiological ones, which then requires that each individual rule be carefully validated. Here we discuss the methodological consequences of this additional requirement. Using the example of corpse clustering in ants, we first illustrate that it may be impossible to discriminate among alternative individual rules by considering only observational data collected at the group level. Six individual behavioral models are described: They are clearly distinct in terms of individual behaviors, they all reproduce satisfactorily the collective dynamics and distribution patterns observed in experiments, and we show theoretically that it is strictly impossible to discriminate two of these models even in the limit of an infinite amount of data whatever the accuracy level. A set of methodological steps are then listed and discussed as practical ways to partially overcome this problem. They involve complementary experimental protocols specifically designed to address the behavioral rules successively, conserving group-level data for the overall model validation. In this context, we highlight the importance of maintaining a sharp distinction between model enunciation, with explicit references to validated biological concepts, and formal translation of these concepts in terms of quantitative state variables and fittable functional dependences. Illustrative examples are provided of the benefits expected during the often long and difficult process of refining a behavioral model, designing adapted experimental protocols and inversing model parameters.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Comportamento de Escolha , Cognição , Tomada de Decisões/fisiologia , Modelos Estatísticos , Animais , Cadáver , Meio Ambiente , Modelos Biológicos , Comportamento Social
18.
J Math Biol ; 58(3): 429-45, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18587541

RESUMO

The trajectories of Kuhlia mugil fish swimming freely in a tank are analyzed in order to develop a model of spontaneous fish movement. The data show that K. mugil displacement is best described by turning speed and its auto-correlation. The continuous-time process governing this new kind of displacement is modelled by a stochastic differential equation of Ornstein-Uhlenbeck family: the persistent turning walker. The associated diffusive dynamics are compared to the standard persistent random walker model and we show that the resulting diffusion coefficient scales non-linearly with linear swimming speed. In order to illustrate how interactions with other fish or the environment can be added to this spontaneous movement model we quantify the effect of tank walls on the turning speed and adequately reproduce the characteristics of the observed fish trajectories.


Assuntos
Modelos Biológicos , Perciformes/fisiologia , Natação/fisiologia , Animais , Simulação por Computador , Processos Estocásticos , Gravação de Videoteipe
19.
Phys Rev Lett ; 97(23): 230604, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17280189

RESUMO

In the field of first return time statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions concerning the characterization of residence time distributions. We show here how general integral constraints can be derived that make it possible to address short-path statistics indirectly by application of the diffusion approximation to long paths. Application to the moments of the distribution at the low-Knudsen limit leads to simple practical results and novel physical pictures.


Assuntos
Modelos Estatísticos , Modelos Teóricos , Simulação por Computador , Difusão , Método de Monte Carlo , Movimento
20.
Phys Rev Lett ; 95(18): 180601, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16383885

RESUMO

It is shown that, when a Monte Carlo algorithm is used for estimation of any physical quantity A, a simple and fast additional procedure can be implemented that simultaneously estimates the sensitivity of A to any problem parameter. The proposed approach is general and systematic in the sense that: (i) it includes domain-deformation sensitivities, i.e., cases where a change in the parameter modifies the domain over which the sampled random variables are defined and (ii) a simple generic procedure is presented to address all remaining free choices in terms of variance minimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA