Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 209(8): 1426-1436, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36192117

RESUMO

Pregnancy depends on a state of maternal immune tolerance mediated by CD4+ regulatory T (Treg) cells. Uterine Treg cells release anti-inflammatory factors, inhibit effector immunity, and support adaptation of the uterine vasculature to facilitate placental development. Insufficient Treg cells or inadequate functional competence is implicated in infertility and recurrent miscarriage, as well as pregnancy complications preeclampsia, fetal growth restriction, and preterm birth, which stem from placental insufficiency. In this review we address an emerging area of interest in pregnancy immunology-the significance of metabolic status in regulating the Treg cell expansion required for maternal-fetal tolerance. We describe how hyperglycemia and insulin resistance affect T cell responses to suppress generation of Treg cells, summarize data that implicate a role for altered glucose metabolism in impaired maternal-fetal tolerance, and explore the prospect of targeting dysregulated metabolism to rebalance the adaptive immune response in women experiencing reproductive disorders.


Assuntos
Placenta , Nascimento Prematuro , Feminino , Glucose/metabolismo , Humanos , Tolerância Imunológica , Recém-Nascido , Gravidez , Nascimento Prematuro/metabolismo , Linfócitos T Reguladores
2.
Immunol Cell Biol ; 96(4): 347-357, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377354

RESUMO

Mesenchymal stromal cells or stem cells (MSCs) have been shown to participate in tissue repair and are immunomodulatory in neuropathological settings. Given this, their potential use in developing a new generation of personalized therapies for autoimmune and inflammatory diseases of the central nervous system (CNS) will be explored. To effectively exert these effector functions, MSCs must first gain entry into damaged neural tissues, a process that has been demonstrated to be a limiting factor in their therapeutic efficacy. In this review, we discuss approaches to maximize the therapeutic efficacy of MSCs by altering their intrinsic trafficking programs to effectively enter neuropathological sites. To this end, we explore the significant role of chemokine receptors and adhesion molecules in directing cellular traffic to the inflamed CNS and the capacity of MSCs to adopt these molecular mechanisms to gain entry to this site. We postulate that understanding and exploiting these migratory mechanisms may be key to the development of cell-based therapies tailored to respond to the migratory cues unique to the nature and stage of progression of individual CNS disorders.


Assuntos
Células-Tronco Adultas/transplante , Autoimunidade , Encéfalo/patologia , Inflamação/imunologia , Inflamação/terapia , Células-Tronco Mesenquimais/citologia , Humanos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia
3.
Discov Immunol ; 3(1): kyae004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863792

RESUMO

The female reproductive tract accommodates and balances the unique immunological challenges of protection from sexually transmitted pathogens and tolerance of the fetus and placenta in pregnancy. Leukocytes in the female reproductive tract actively engage in extensive maternal adaptations that are imperative for embryo implantation, placental development, and fetal growth support. γδ T cells are abundant at many mucosal sites in the body, where they provide protection against pathogens and cancer, and have roles in tissue renewal and homeostasis. In this review, we summarize studies in humans and rodents showing that γδ T cells are prevalent in the female reproductive tract and fluctuate in response to hormone changes across the reproductive cycle. Emerging evidence points to a link between changes in their abundance and molecular repertoire in the uterus and pregnancy disorders including recurrent miscarriage and preterm birth. However, defining the precise functional role of female reproductive tract γδ T cells and understanding their physiological significance in reproduction and pregnancy have remained elusive. Here, we critically analyze whether reproductive tract γδ T cells could be active participants in reproductive events-or whether their principal function is immune defense, in which case they may compromise pregnancy success unless adequately regulated.

4.
iScience ; 27(2): 108994, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327801

RESUMO

Regulatory T (Treg) cell defects are implicated in disorders of embryo implantation and placental development, but the origins of Treg cell dysfunction are unknown. Here, we comprehensively analyzed the phenotypes and transcriptional profile of peripheral blood Treg cells in individuals with early pregnancy failure (EPF). Compared to fertile subjects, EPF subjects had 32% fewer total Treg cells and 54% fewer CD45RA+CCR7+ naive Treg cells among CD4+ T cells, an altered Treg cell phenotype with reduced transcription factor FOXP3 and suppressive marker CTLA4 expression, and lower Treg:Th1 and Treg:Th17 ratios. RNA sequencing demonstrated an aberrant gene expression profile, with upregulation of pro-inflammatory genes including CSF2, IL4, IL17A, IL21, and IFNG in EPF Treg cells. In silico analysis revealed 25% of the Treg cell dysregulated genes are targets of FOXP3. We conclude that EPF is associated with systemic Treg cell defects arising due to disrupted FOXP3 transcriptional control and loss of lineage fidelity.

5.
Clin Transl Immunology ; 10(8): e1328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408876

RESUMO

OBJECTIVES: Intravenous infusion of Intralipid is an adjunct therapy in assisted reproduction treatment (ART) when immune-associated infertility is suspected. Here, we evaluated the effect of Intralipid infusion on regulatory T cells (Treg cells), effector T cells and plasma cytokines in peripheral blood of women undertaking IVF. METHODS: This prospective, observational pilot study assessed Intralipid infusion in 14 women exhibiting recurrent implantation failure, a clinical sign of immune-associated infertility. Peripheral blood was collected immediately prior to and 7 days after intravenous administration of Intralipid. Plasma cytokines were measured by Luminex, and T-cell subsets were analysed by flow cytometry. RESULTS: A small increase in conventional CD8+ T cells occurred after Intralipid infusion, but no change was seen in CD4+ Treg cells, or naïve, memory or effector memory T cells. Proliferation marker Ki67, transcription factors Tbet and RORγt, and markers of suppressive capacity CTLA4 and HLA-DR were unchanged. Dimensionality-reduction analysis using the tSNE algorithm confirmed no phenotype shift within Treg cells or other T cells. Intralipid infusion increased plasma CCL2, CCL3, CXCL8, GM-CSF, G-CSF, IL-6, IL-21, TNF and VEGF. CONCLUSION: Intralipid infusion elicited elevated pro-inflammatory cytokines, and a minor increase in CD8+ T cells, but no change in pro-tolerogenic Treg cells. Notwithstanding the limitation of no placebo control, the results do not support Intralipid as a candidate intervention to attenuate the Treg cell response in women undergoing ART. Future placebo-controlled studies are needed to confirm the potential efficacy and clinical significance of Intralipid in attenuating cytokine induction and circulating CD8+ T cells.

6.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289156

RESUMO

Current immunotherapies involving CD8+ T cell responses show remarkable promise, but their efficacy in many solid tumors is limited, in part due to the low frequency of tumor-specific T cells in the tumor microenvironment (TME). Here, we identified a role for host atypical chemokine receptor 4 (ACKR4) in controlling intratumor T cell accumulation and activation. In the absence of ACKR4, an increase in intratumor CD8+ T cells inhibited tumor growth, and nonhematopoietic ACKR4 expression was critical. We show that ACKR4 inhibited CD103+ dendritic cell retention in tumors through regulation of the intratumor abundance of CCL21. In addition, preclinical studies indicate that ACKR4 and CCL21 are potential therapeutic targets to enhance responsiveness to immune checkpoint blockade or T cell costimulation.


Assuntos
Quimiocina CCL21/metabolismo , Imunidade , Neoplasias/imunologia , Receptores CCR/metabolismo , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Cadeias alfa de Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/genética , Células Estromais/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA