RESUMO
Cellular phenotypic heterogeneity is an important hallmark of many biological processes and understanding its origins remains a substantial challenge. This heterogeneity often reflects variations in the chromatin structure, influenced by factors such as viral infections and cancer, which dramatically reshape the cellular landscape. To address the challenge of identifying distinct cell states, we developed artificial intelligence of the nucleus (AINU), a deep learning method that can identify specific nuclear signatures at the nanoscale resolution. AINU can distinguish different cell states based on the spatial arrangement of core histone H3, RNA polymerase II or DNA from super-resolution microscopy images. With only a small number of images as the training data, AINU correctly identifies human somatic cells, human-induced pluripotent stem cells, very early stage infected cells transduced with DNA herpes simplex virus type 1 and even cancer cells after appropriate retraining. Finally, using AI interpretability methods, we find that the RNA polymerase II localizations in the nucleoli aid in distinguishing human-induced pluripotent stem cells from their somatic cells. Overall, AINU coupled with super-resolution microscopy of nuclear structures provides a robust tool for the precise detection of cellular heterogeneity, with considerable potential for advancing diagnostics and therapies in regenerative medicine, virology and cancer biology.
RESUMO
Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.
Assuntos
Cistos , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Epitélio , Células EpiteliaisRESUMO
In this paper, we present the results of the MitoEM challenge on mitochondria 3D instance segmentation from electron microscopy images, organized in conjunction with the IEEE-ISBI 2021 conference. Our benchmark dataset consists of two large-scale 3D volumes, one from human and one from rat cortex tissue, which are 1,986 times larger than previously used datasets. At the time of paper submission, 257 participants had registered for the challenge, 14 teams had submitted their results, and six teams participated in the challenge workshop. Here, we present eight top-performing approaches from the challenge participants, along with our own baseline strategies. Posterior to the challenge, annotation errors in the ground truth were corrected without altering the final ranking. Additionally, we present a retrospective evaluation of the scoring system which revealed that: 1) challenge metric was permissive with the false positive predictions; and 2) size-based grouping of instances did not correctly categorize mitochondria of interest. Thus, we propose a new scoring system that better reflects the correctness of the segmentation results. Although several of the top methods are compared favorably to our own baselines, substantial errors remain unsolved for mitochondria with challenging morphologies. Thus, the challenge remains open for submission and automatic evaluation, with all volumes available for download.
Assuntos
Córtex Cerebral , Mitocôndrias , Humanos , Ratos , Animais , Estudos Retrospectivos , Microscopia Eletrônica , Processamento de Imagem Assistida por Computador/métodosRESUMO
Electron microscopy (EM) allows the identification of intracellular organelles such as mitochondria, providing insights for clinical and scientific studies. In recent years, a number of novel deep learning architectures have been published reporting superior performance, or even human-level accuracy, compared to previous approaches on public mitochondria segmentation datasets. Unfortunately, many of these publications make neither the code nor the full training details public, leading to reproducibility issues and dubious model comparisons. Thus, following a recent code of best practices in the field, we present an extensive study of the state-of-the-art architectures and compare them to different variations of U-Net-like models for this task. To unveil the impact of architectural novelties, a common set of pre- and post-processing operations has been implemented and tested with each approach. Moreover, an exhaustive sweep of hyperparameters has been performed, running each configuration multiple times to measure their stability. Using this methodology, we found very stable architectures and training configurations that consistently obtain state-of-the-art results in the well-known EPFL Hippocampus mitochondria segmentation dataset and outperform all previous works on two other available datasets: Lucchi++ and Kasthuri++. The code and its documentation are publicly available at https://github.com/danifranco/EM_Image_Segmentation .
Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica , Mitocôndrias , Reprodutibilidade dos TestesRESUMO
BACKGROUND AND OBJECTIVE: Accurate segmentation of electron microscopy (EM) volumes of the brain is essential to characterize neuronal structures at a cell or organelle level. While supervised deep learning methods have led to major breakthroughs in that direction during the past years, they usually require large amounts of annotated data to be trained, and perform poorly on other data acquired under similar experimental and imaging conditions. This is a problem known as domain adaptation, since models that learned from a sample distribution (or source domain) struggle to maintain their performance on samples extracted from a different distribution or target domain. In this work, we address the complex case of deep learning based domain adaptation for mitochondria segmentation across EM datasets from different tissues and species. METHODS: We present three unsupervised domain adaptation strategies to improve mitochondria segmentation in the target domain based on (1) state-of-the-art style transfer between images of both domains; (2) self-supervised learning to pre-train a model using unlabeled source and target images, and then fine-tune it only with the source labels; and (3) multi-task neural network architectures trained end-to-end with both labeled and unlabeled images. Additionally, to ensure good generalization in our models, we propose a new training stopping criterion based on morphological priors obtained exclusively in the source domain. The code and its documentation are publicly available at https://github.com/danifranco/EM_domain_adaptation. RESULTS: We carried out all possible cross-dataset experiments using three publicly available EM datasets. We evaluated our proposed strategies and those of others based on the mitochondria semantic labels predicted on the target datasets. CONCLUSIONS: The methods introduced here outperform the baseline methods and compare favorably to the state of the art. In the absence of validation labels, monitoring our proposed morphology-based metric is an intuitive and effective way to stop the training process and select in average optimal models.
Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica , Mitocôndrias , Redes Neurais de ComputaçãoRESUMO
Epithelial cell organization and the mechanical stability of tissues are closely related. In this context, it has been recently shown that packing optimization in bended or folded epithelia is achieved by an energy minimization mechanism that leads to a complex cellular shape: the "scutoid". Here, we focus on the relationship between this shape and the connectivity between cells. We use a combination of computational, experimental, and biophysical approaches to examine how energy drivers affect the three-dimensional (3D) packing of tubular epithelia. We propose an energy-based stochastic model that explains the 3D cellular connectivity. Then, we challenge it by experimentally reducing the cell adhesion. As a result, we observed an increment in the appearance of scutoids that correlated with a decrease in the energy barrier necessary to connect with new cells. We conclude that tubular epithelia satisfy a quantitative biophysical principle that links tissue geometry and energetics with the average cellular connectivity.
Assuntos
Células Epiteliais , Modelos Biológicos , Biofísica , Forma Celular , EpitélioRESUMO
Electron microscopy (EM) allows the identification of intracellular organelles such as mitochondria, providing insights for clinical and scientific studies. However, public mitochondria segmentation datasets only contain hundreds of instances with simple shapes. It is unclear if existing methods achieving human-level accuracy on these small datasets are robust in practice. To this end, we introduce the MitoEM dataset, a 3D mitochondria instance segmentation dataset with two (30µm)3 volumes from human and rat cortices respectively, 3, 600× larger than previous benchmarks. With around 40K instances, we find a great diversity of mitochondria in terms of shape and density. For evaluation, we tailor the implementation of the average precision (AP) metric for 3D data with a 45× speedup. On MitoEM, we find existing instance segmentation methods often fail to correctly segment mitochondria with complex shapes or close contacts with other instances. Thus, our MitoEM dataset poses new challenges to the field. We release our code and data: https://donglaiw.github.io/page/mitoEM/index.html.