Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7996): 735-742, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030727

RESUMO

Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.


Assuntos
Sequência Conservada , Evolução Molecular , Genoma , Primatas , Animais , Feminino , Humanos , Gravidez , Sequência Conservada/genética , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , Genoma/genética , Mamíferos/classificação , Mamíferos/genética , Placenta , Primatas/classificação , Primatas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas/genética , Regulação da Expressão Gênica/genética
2.
BMC Genomics ; 22(1): 735, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635054

RESUMO

BACKGROUND: Numerous Ebola virus outbreaks have occurred in Equatorial Africa over the past decades. Besides human fatalities, gorillas and chimpanzees have also succumbed to the fatal virus. The 2004 outbreak at the Odzala-Kokoua National Park (Republic of Congo) alone caused a severe decline in the resident western lowland gorilla (Gorilla gorilla gorilla) population, with a 95% mortality rate. Here, we explore the immediate genetic impact of the Ebola outbreak in the western lowland gorilla population. RESULTS: Associations with survivorship were evaluated by utilizing DNA obtained from fecal samples from 16 gorilla individuals declared missing after the outbreak (non-survivors) and 15 individuals observed before and after the epidemic (survivors). We used a target enrichment approach to capture the sequences of 123 genes previously associated with immunology and Ebola virus resistance and additionally analyzed the gut microbiome which could influence the survival after an infection. Our results indicate no changes in the population genetic diversity before and after the Ebola outbreak, and no significant differences in microbial community composition between survivors and non-survivors. However, and despite the low power for an association analysis, we do detect six nominally significant missense mutations in four genes that might be candidate variants associated with an increased chance of survival. CONCLUSION: This study offers the first insight to the genetics of a wild great ape population before and after an Ebola outbreak using target capture experiments from fecal samples, and presents a list of candidate loci that may have facilitated their survival.


Assuntos
Microbioma Gastrointestinal , Doença pelo Vírus Ebola , Animais , Surtos de Doenças , Gorilla gorilla/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/veterinária , Humanos , Pan troglodytes
3.
Heredity (Edinb) ; 125(1-2): 15-27, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32346130

RESUMO

Populations of the common chimpanzee (Pan troglodytes) are in an impending risk of going extinct in the wild as a consequence of damaging anthropogenic impact on their natural habitat and illegal pet and bushmeat trade. Conservation management programmes for the chimpanzee have been established outside their natural range (ex situ), and chimpanzees from these programmes could potentially be used to supplement future conservation initiatives in the wild (in situ). However, these programmes have often suffered from inadequate information about the geographical origin and subspecies ancestry of the founders. Here, we present a newly designed capture array with ~60,000 ancestry informative markers used to infer ancestry of individual chimpanzees in ex situ populations and determine geographical origin of confiscated sanctuary individuals. From a test panel of 167 chimpanzees with unknown origins or subspecies labels, we identify 90 suitable non-admixed individuals in the European Association of Zoos and Aquaria (EAZA) Ex situ Programme (EEP). Equally important, another 46 individuals have been identified with admixed subspecies ancestries, which therefore over time, should be naturally phased out of the breeding populations. With potential for future re-introduction to the wild, we determine the geographical origin of 31 individuals that were confiscated from the illegal trade and demonstrate the promises of using non-invasive sampling in future conservation action plans. Collectively, our genomic approach provides an exemplar for ex situ management of endangered species and offers an efficient tool in future in situ efforts to combat the illegal wildlife trade.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Pan troglodytes , Animais , Ecossistema , Pan troglodytes/genética
4.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205491

RESUMO

Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole genome sequencing data for 809 individuals from 233 primate species, and identified 4.3 million common protein-altering variants with orthologs in human. We show that these variants can be inferred to have non-deleterious effects in human based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases. One Sentence Summary: Deep learning classifier trained on 4.3 million common primate missense variants predicts variant pathogenicity in humans.

5.
Science ; 380(6648): 906-913, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37262161

RESUMO

The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.


Assuntos
Evolução Biológica , Variação Genética , Primatas , Animais , Humanos , Genoma , Taxa de Mutação , Filogenia , Primatas/genética , Densidade Demográfica
6.
Science ; 380(6648): eabn8153, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37262156

RESUMO

Personalized genome sequencing has revealed millions of genetic differences between individuals, but our understanding of their clinical relevance remains largely incomplete. To systematically decipher the effects of human genetic variants, we obtained whole-genome sequencing data for 809 individuals from 233 primate species and identified 4.3 million common protein-altering variants with orthologs in humans. We show that these variants can be inferred to have nondeleterious effects in humans based on their presence at high allele frequencies in other primate populations. We use this resource to classify 6% of all possible human protein-altering variants as likely benign and impute the pathogenicity of the remaining 94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing pathogenic variants in patients with genetic diseases.


Assuntos
Variação Genética , Primatas , Animais , Humanos , Sequência de Bases , Frequência do Gene , Primatas/genética , Sequenciamento Completo do Genoma
7.
Trends Ecol Evol ; 37(5): 420-429, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35086740

RESUMO

Although genetic diversity has been recognized as a key component of biodiversity since the first Convention on Biological Diversity (CBD) in 1993, it has rarely been included in conservation policies and regulations. Even less appreciated is the role that ancient and historical DNA (aDNA and hDNA, respectively) could play in unlocking the temporal dimension of genetic diversity, allowing key conservation issues to be resolved, including setting baselines for intraspecies genetic diversity, estimating changes in effective population size (Ne), and identifying the genealogical continuity of populations. Here, we discuss how genetic information from ancient and historical specimens can play a central role in preserving biodiversity and highlight specific conservation policies that could incorporate such data to help countries meet their CBD obligations.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , DNA , Políticas
8.
Curr Biol ; 31(9): 1862-1871.e5, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33636121

RESUMO

Large carnivores are generally sensitive to ecosystem changes because their specialized diet and position at the top of the trophic pyramid is associated with small population sizes. Accordingly, low genetic diversity at the whole-genome level has been reported for all big cat species, including the widely distributed leopard. However, all previous whole-genome analyses of leopards are based on the Far Eastern Amur leopards that live at the extremity of the species' distribution and therefore are not necessarily representative of the whole species. We sequenced 53 whole genomes of African leopards. Strikingly, we found that the genomic diversity in the African leopard is 2- to 5-fold higher than in other big cats, including the Amur leopard, likely because of an exceptionally high effective population size maintained by the African leopard throughout the Pleistocene. Furthermore, we detected ongoing gene flow and very low population differentiation within African leopards compared with those of other big cats. We corroborated this by showing a complete absence of an otherwise ubiquitous equatorial forest barrier to gene flow. This sets the leopard apart from most other widely distributed large African mammals, including lions. These results revise our understanding of trophic sensitivity and highlight the remarkable resilience of the African leopard, likely because of its extraordinary habitat versatility and broad dietary niche.


Assuntos
Ecossistema , Variação Genética , Panthera/anatomia & histologia , Panthera/genética , África , Animais , Feminino , Fluxo Gênico , Masculino , Panthera/classificação , Densidade Demográfica
10.
Primates ; 61(3): 347-350, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32162159

RESUMO

The most frequent chromosomal aneuploidy in humans, trisomy 21 (T21), has only been reported twice in the common chimpanzee (Pan troglodytes). In both cases, phenotypical traits were comparable to human T21 traits and were formally diagnosed through conventional techniques like chromosomal staining. Here, we present the first application of sequencing data as a diagnostic tool to compare chromosomal dosage imbalances in chimpanzees. By calculating the ratio of mapped reads on each chromosome between a case and a control, we observe a trisomic dosage imbalance on chromosome 21 in the case individual. While case numbers remain too low to be conclusive, evidence suggests that prevalence of T21 in chimpanzees could be lower than in humans. In future genetic testing of captive ape populations, the genetic diagnostic methods presented here will allow for a reliable and time-efficient assessment of the global prevalence of chromosomal dose imbalances in chimpanzees and other great apes.


Assuntos
Síndrome de Down/veterinária , Animais , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Feminino , Pan troglodytes
12.
Science ; 354(6311): 477-481, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27789843

RESUMO

Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor of geographic origin at country and regional scales. Multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of central and eastern chimpanzees between 200,000 and 550,000 years ago, probably with subsequent spread into Nigeria-Cameroon chimpanzees. Together with another, possibly more recent contact (after 200,000 years ago), bonobos contributed less than 1% to the central chimpanzee genomes. Admixture thus appears to have been widespread during hominid evolution.


Assuntos
Evolução Molecular , Variação Genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Camarões , Fluxo Gênico , Genoma , Genômica , Haplótipos , Nigéria , População
13.
PLoS One ; 10(12): e0143605, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26630483

RESUMO

With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined.


Assuntos
Evolução Molecular , Vírus da Febre Aftosa/genética , África/epidemiologia , Animais , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/isolamento & purificação , Modelos Genéticos , Filogenia , RNA Viral/genética , Recombinação Genética , Seleção Genética , Alinhamento de Sequência , Sorotipagem , Fatores de Tempo
14.
Science ; 348(6231): 242-245, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25859046

RESUMO

Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival.


Assuntos
Variação Genética , Genoma , Gorilla gorilla/genética , Endogamia , Adaptação Fisiológica , Animais , Evolução Biológica , Variações do Número de Cópias de DNA , República Democrática do Congo , Espécies em Perigo de Extinção , Feminino , Gorilla gorilla/classificação , Gorilla gorilla/fisiologia , Homozigoto , Desequilíbrio de Ligação , Masculino , Mutação , Dinâmica Populacional , Ruanda , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA