Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Geobiology ; 22(4): e12609, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38958391

RESUMO

Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post-depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturation in situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47 values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth-based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite-each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (µm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.


Assuntos
Isótopos de Carbono , Carbonatos , Sedimentos Geológicos , Lagos , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Lagos/microbiologia , Lagos/química , Isótopos de Carbono/análise , Carbonatos/química , Carbonatos/análise , New York , Microbiota , Ciclo do Carbono , Bactérias/metabolismo , Estações do Ano
2.
Geobiology ; 18(5): 566-593, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32196875

RESUMO

Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18 Owater , δ13 CDIC ), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18 Ocarb , δ13 Ccarb , ∆47 ), as well as carbon isotopic compositions of bulk organic matter (δ13 Corg ) and dissolved inorganic carbon (DIC; δ13 CDIC ) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time-averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47 isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47 )), δ18 Ocarb , and calculated δ18 Owater in isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation-precipitation balance, as well as identify microbially mediated carbonate formation.


Assuntos
Lagos , Microbiota , Isótopos de Carbono , Carbonatos , Fácies , Sedimentos Geológicos , Humanos , Hidrologia , RNA Ribossômico 16S , Utah
3.
Ultrasound Med Biol ; 30(9): 1199-207, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15550323

RESUMO

Spasticity, a major complication of central nervous system disorders, signified by uncontrollable muscle contractions, is very difficult to treat effectively. We report on the use of ultrasound (US) image-guided high-intensity focused US (HIFU) to target and suppress the function of the sciatic nerve complex of rabbits in vivo, as a possible treatment of spasticity. The image-guided HIFU device included a 3.2-MHz spherically curved transducer and an intraoperative imaging probe. A focal acoustic intensity of 1480 to 1850 W/cm(2), applied using a scanning method, was effective in achieving complete conduction block in 100% of 22 nerve complexes with HIFU treatment times of 36 +/- 14 s (mean +/- SD). Gross examination showed blanching of the nerve at the HIFU treatment site and lesion volumes of 2.8 +/- 1.4 cm(3) encompassing the nerve complex. Histologic examination indicated axonal demyelination and necrosis of Schwann cells as probable mechanisms of nerve block. With accurate localization and targeting of peripheral nerves using US imaging, HIFU could become a promising tool for the suppression of spasticity.


Assuntos
Espasticidade Muscular/terapia , Manejo da Dor , Nervo Isquiático/diagnóstico por imagem , Terapia por Ultrassom/métodos , Animais , Membro Posterior , Espasticidade Muscular/diagnóstico por imagem , Bloqueio Nervoso/métodos , Dor/diagnóstico por imagem , Nervo Fibular/diagnóstico por imagem , Nervo Fibular/patologia , Coelhos , Nervo Isquiático/patologia , Nervo Tibial/diagnóstico por imagem , Nervo Tibial/patologia , Transdutores , Ultrassom , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA