Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 31(7): 1466-1487, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023841

RESUMO

The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.


Assuntos
Genômica , Poliploidia , Trifolium/genética , Vias Biossintéticas/genética , Mapeamento Cromossômico , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Geografia , Hibridização Genética , Camada de Gelo , Fatores de Tempo
2.
BMC Genomics ; 14: 388, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758831

RESUMO

BACKGROUND: White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4×=32) estimated at 1093 Mb. Several linkage maps of various sizes, marker sources and completeness are available, however, no integrated map and marker set has explored consistency of linkage analysis among unrelated mapping populations. Such integrative analysis requires tools for homoeologue matching among populations. Development of these tools provides for a consistent framework map of the white clover genome, and facilitates in silico alignment with the model forage legume, Medicago truncatula. RESULTS: This is the first report of integration of independent linkage maps in white clover, and adds to the literature on methyl filtered GeneThresher®-derived microsatellite (simple sequence repeat; SSR) markers for linkage mapping. Gene-targeted SSR markers were discovered in a GeneThresher® (TrGT) methyl-filtered database of 364,539 sequences, which yielded 15,647 SSR arrays. Primers were designed for 4,038 arrays and of these, 465 TrGT-SSR markers were used for parental consensus genetic linkage analysis in an F1 mapping population (MP2). This was merged with an EST-SSR consensus genetic map of an independent population (MP1), using markers to match homoeologues and develop a multi-population integrated map of the white clover genome. This integrated map (IM) includes 1109 loci based on 804 SSRs over 1274 cM, covering 97% of the genome at a moderate density of one locus per 1.2 cM. Eighteen candidate genes and one morphological marker were also placed on the IM. Despite being derived from disparate populations and marker sources, the component maps and the derived IM had consistent representations of the white clover genome for marker order and genetic length. In silico analysis at an E-value threshold of 1e-20 revealed substantial co-linearity with the Medicago truncatula genome, and indicates a translocation between T. repens groups 2 and 6 relative to M. truncatula. CONCLUSIONS: This integrated genetic linkage analysis provides a consistent and comprehensive linkage analysis of the white clover genome, with alignment to a model forage legume. Associated marker locus information, particularly the homoeologue-specific markers, offers a new resource for forage legume research to enable genetic analysis and improvement of this forage and grassland species.


Assuntos
Mapeamento Cromossômico , Genômica , Medicago/genética , Alinhamento de Sequência , Trifolium/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Técnicas de Genotipagem , Repetições de Microssatélites/genética
3.
Ann Bot ; 110(6): 1291-301, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915577

RESUMO

BACKGROUND AND AIMS: Trifolium repens (white clover) is a valuable component of pastures due to its ability to fix nitrogen. Productivity of T. repens is sometimes threatened by insect pests, and it has been suggested that phenylpropanoid-derived isoflavonoids such as formononetin can protect white clover from insect damage. The aim of this study was to isolate and functionally characterize an isoflavone synthase (IFS2_12) from T. repens by expressing it in Nicotiana tabacum (tobacco), a plant which does not naturally produce isoflavonoids. METHODS: To induce anthocyanin production and increase isoflavonoid precursors in tobacco, the tomato R2R3 MYB transcription factor ANT1 was expressed in tobacco (Nt-ANT1 plants). IFS2_12 was heterologously expressed in tobacco both transiently and stably, and isoflavonoids in leaf extracts were analysed by liquid chromatography (LC) coupled to mass spectrometry (MS(n)). As a positive control, a double construct of soybean IFS and alfalfa chalcone isomerase (IFS/CHI), which had been previously shown to induce isoflavonoid production in tobacco, was also expressed. Stable transformants expressing IFS2_12, soybean/alfalfa IFS/CHI and ANT1 were crossed and the resulting plants were analysed for isoflavonoid production. KEY RESULTS: Leaves of tobacco plants expressing ANT1 had a range of phenotypes from mainly green to uniformly bronze coloured. Both transient and stable expression of the IFS2_12 or IFS/CHI constructs resulted in the production of the isoflavonoid genistein and its conjugates. The highest levels (up to 19·2 mg g(-1) d. wt) accumulated in a progeny of a cross between a purple ANT1 and a IFS/ CHI transformant, while the second highest concentration was found in a plant derived from a selfed IFS2-12 transformant. CONCLUSIONS: It is concluded that the gene IFS2_12 isolated from T. repens encodes an isoflavone synthase. This study paves the way for engineering white clover plants with higher levels of isoflavonoids than naturally found in this species for sufficient insect protection.


Assuntos
Isoflavonas/metabolismo , Oxigenases/genética , Fatores de Transcrição/genética , Trifolium/enzimologia , Vias Biossintéticas , Cruzamentos Genéticos , Expressão Gênica , Engenharia Genética , Genisteína/metabolismo , Isoflavonas/isolamento & purificação , Solanum lycopersicum/genética , Nitrogênio/metabolismo , Oxigenases/metabolismo , Fenótipo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/química , Plântula/genética , Plântula/metabolismo , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Transgenes , Trifolium/química , Trifolium/genética
4.
Plant Methods ; 14: 75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181764

RESUMO

BACKGROUND: The recent development of next-generation sequencing DNA marker technologies, such as genotyping-by-sequencing (GBS), generates thousands of informative single nucleotide polymorphism markers in almost any species, regardless of genomic resources. This enables poorly resourced or "orphan" crops/species access to high-density, high-throughput marker platforms which have revolutionised population genetics studies and plant breeding. DNA quality underpins success of GBS methods as the DNA must be amenable to restriction enzyme digestion and sequencing. A barrier to implementing GBS technologies is access to inexpensive, high-throughput extraction methods that yield sequencing-quality genomic DNA (gDNA) from plants. Several high-throughput DNA extraction methods are available, but typically provide low yield or poor quality gDNA, or are costly (US$6-$9/sample) for consumables. RESULTS: We modified a non-organic solvent protocol to extract microgram quantities (1-13 µg) of sequencing-quality high molecular weight gDNA inexpensively in 96-well plates from either fresh, freeze-dried or silica gel-dried plant tissue. The protocol was effective for several easy and difficult-to-extract forage, crop, horticultural and common model species including Trifolium, Medicago, Lolium, Secale, Festuca, Malus, Oryza, and Arabidopsis. The extracted DNA was of high molecular weight and digested readily with restriction enzymes. Contrasting with other extraction protocols we assessed, Illumina-based sequencing of GBS libraries developed from this gDNA had very uniform high quality base-calls to the end of sequence reads. Furthermore, DNA extracted using this method has been sequenced successfully with the PacBio long-read platform. The protocol is scalable, readily automated without requirement for fume hoods, requires approximately three hours to process 192 samples (384-576 samples/day), and is inexpensive at US$0.62/sample for consumables. CONCLUSIONS: This versatile, scalable and simple protocol yields high molecular weight genomic DNA suitable for restriction enzyme digestion and next-generation sequencing applications including GBS and long-read sequencing platforms such as PacBio. The low cost, high-throughput, and extraction of high quality gDNA from a range of fresh and dried source plant material makes this method suitable for many sequencing and genotyping applications including large-scale sample screening underpinning breeding programmes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA