Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 116, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263280

RESUMO

Affective computing has experienced substantial advancements in recognizing emotions through image and facial expression analysis. However, the incorporation of physiological data remains constrained. Emotion recognition with physiological data shows promising results in controlled experiments but lacks generalization to real-world settings. To address this, we present G-REx, a dataset for real-world affective computing. We collected physiological data (photoplethysmography and electrodermal activity) using a wrist-worn device during long-duration movie sessions. Emotion annotations were retrospectively performed on segments with elevated physiological responses. The dataset includes over 31 movie sessions, totaling 380 h+ of data from 190+ subjects. The data were collected in a group setting, which can give further context to emotion recognition systems. Our setup aims to be easily replicable in any real-life scenario, facilitating the collection of large datasets for novel affective computing systems.


Assuntos
Emoções , Fotopletismografia , Humanos , Reconhecimento Psicológico , Estudos Retrospectivos
2.
Sci Rep ; 14(1): 7872, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570536

RESUMO

Conventional snap fasteners used in clothing are often used as electrical connectors in e-textile and wearable applications for signal transmission due to their wide availability and ease of use. Nonetheless, limited research exists on the validation of these fasteners, regarding the impact of contact-induced high-amplitude artefacts, especially under motion conditions. In this work, three types of fasteners were used as electromechanical connectors, establishing the interface between a regular sock and an acquisition device. The tested fasteners have different shapes and sizes, as well as have different mechanisms of attachment between the plug and receptacle counterparts. Experimental evaluation was performed under static conditions, slow walking, and rope jumping at a high cadence. The tests were also performed with a test mass of 140 g. Magnetic fasteners presented excellent electromechanical robustness under highly dynamic human movement with and without the additional mass. On the other hand, it was demonstrated that the Spring snap buttons (with a spring-based engaging mechanism) presented a sub-optimal performance under high motion and load conditions, followed by the Prong snap fasteners (without spring), which revealed a high susceptibility to artefacts. Overall, this work provides further evidence on the importance and reliability of clothing fasteners as electrical connectors in wearable systems.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Eletricidade , Condutividade Elétrica
3.
IEEE Trans Biomed Eng ; 71(7): 2243-2252, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38376980

RESUMO

OBJECTIVE: This work explores Hall effect sensing paired with a permanent magnet, in the context of pulmonary rehabilitation exercise training. METHODS: Experimental evaluation was performed considering as reference the gold-standard of respiratory monitoring, an airflow transducer, and performance was compared to another wearable device with analogous usability - a piezoelectric sensor. A total of 16 healthy participants performed 15 activities, representative of pulmonary rehabilitation exercises, simultaneously using all devices. Evaluation was performed based on detection of flow reversal events and key respiratory parameters. RESULTS: Overall, the proposed sensor outperformed the piezoelectric sensor with a mean ratio, precision, and recall of 0.97, 0.97, and 0.95, respectively, against 0.98, 0.90, and 0.88. Evaluation regarding the respiratory parameters indicates an adequate accuracy when it comes to breath cycle, inspiration, and expiration times, with mean relative errors around 4% for breath cycle and 8% for inspiration/expiration times, despite some variability. Bland-Altman analysis indicates no systematic biases. CONCLUSION: Characterization of the proposed sensor shows adequate monitoring capabilities for exercises that do not rely heavily on torso mobility, but may present a limitation when it comes to activities such as side stretches. SIGNIFICANCE: This work provides a comprehensive characterization of a magnetic field-based respiration sensor, including a discussion on its robustness to different algorithm thresholds. It proves the viability of the sensor in a range of exercises, expanding the applicability of Hall effect sensors as a feasible wearable approach to real-time respiratory monitoring.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Adulto , Feminino , Campos Magnéticos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Adulto Jovem , Desenho de Equipamento , Processamento de Sinais Assistido por Computador/instrumentação
4.
Sci Rep ; 14(1): 3110, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326387

RESUMO

The main objective of the present work was to highlight differences and similarities in gene expression patterns between different pluripotent stem cell cardiac differentiation protocols, using a workflow based on unsupervised machine learning algorithms to analyse the transcriptome of cells cultured as a 2D monolayer or as 3D aggregates. This unsupervised approach effectively allowed to portray the transcriptomic changes that occurred throughout the differentiation processes, with a visual representation of the entire transcriptome. The results allowed to corroborate previously reported data and also to unveil new gene expression patterns. In particular, it was possible to identify a correlation between low cardiomyocyte differentiation efficiencies and the early expression of a set of non-mesodermal genes, which can be further explored as predictive markers of differentiation efficiency. The workflow here developed can also be applied to analyse other stem cell differentiation transcriptomic datasets, envisaging future clinical implementation of cellular therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Transcriptoma , Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Perfilação da Expressão Gênica/métodos , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA